
Parser Generators
l Up till now we have constructed parsers by

hand for our language implementations.
l Given some of the repetitive work involved

you probably have asked yourself if some of
that can be automated.

l The answer is: Yes!
l Parser generators will process a grammar

specification and generate code that implements
a parser.

Chap 13

Lex/YACC
l The most well-known parser generator tool set is

Lex/YACC
l Lex – LEXical analyzer
l YACC – Yet Another Compiler Compiler

l These tools were developed by the original Unix
creators in order to be able to create “little
languages” very fast.

l Lex is a regular expression based lexical analyzer
(very similar to our lexer)

l YACC creates bottom-up parsers.
l We will be using an implementation of Lex/YACC in

Python called PLY.

Bottom-Up Parsing – LR(1)
l Previously we have studied top-down or LL(1)

parsing.
l The idea here was to start with the start symbol and

keep expanding it until the whole input was read and
matched.

l In bottom-up or LR(1) parsing we do exactly the
opposite, we try to match the input to a rule and
then keep reducing the input replacing it with the
non-terminal of the rule. The last step is to replace
the current input with the start-symbol.

l Observation: in LR(1) parsing we apply the rules
backwards – this is called reduction

Bottom-Up Parsing – LR(1)
l In our LL(1) parsing example we replaced non-terminal symbols with

functions that did the expansions and the matching for us.
l In LR(1) parsing we use a stack to help us find the correct

reductions.
l Given a stack, an LR(1) parser has four available actions:

l Shift – push an input token on the stack
l Reduce – pop elements from the stack and replace by a non-

terminal (apply a rule ‘backwards’)
l Accept – accept the current program
l Reject – reject the current program

Bottom-Up Parsing – LR(1)
p + x 1 ;

Stack Input Action
<empty> p + x 1 ; Shift

p + x 1 ; Shift

p + x 1 ; Shift

p + x 1 ; Reduce

p + var 1 ; Reduce

p + exp 1 ; Shift

p + exp 1 ; Reduce

p + exp num ; Reduce

p + exp exp ; Reduce

p exp ; Shift

p exp ; <empty> Reduce

stmt <empty> Shift

stmt <empty> <empty> Reduce

stmt stmt_list <empty> Reduce

stmt_list <empty> Accept

Bottom-Up Parsing – LR(1)
p + x 1 ;

Stack
<empty>

p

p +

p + x

p + var

p + exp

p + exp 1

p + exp num

p + exp exp

p exp

p exp ;

stmt

stmt <empty>

stmt stmt_list

stmt_list

stmt_list

stmt

p exp ;

x 1

exp exp

var num

+

stmt_list

“”

Bottom-Up Parsing – LR(1)

p + x s ;
Stack Input Action
<empty> p + x s ; Shift
p + x s ; Shift
p + x s ; Shift
p + x s ; Reduce
p + var s ; Reduce
p + exp s ; Shift
p + exp s ; Shift
p + exp s ; <empty> Reject

Let’s try an illegal sentence

Parser Generators

Parser
GeneratorGrammar

File
Parser Code
(e.g. Python)

That looks very much like a translator!

Parser Generators

Syntax
Analysis

Grammar
File

IR
Semantic
Analysis

IR
Code

Generation Parser
Code

Parser generators are an example of a domain specific
language translator!

Ply is a parser generator, it translates a grammar specification
into parser code written in Python.

Using Ply
l Documentation on Ply can be found here:

l http://www.dabeaz.com/ply/ply.html
l Documentation on Ply grammar

specifications can be found here:
l http://www.dabeaz.com/ply/ply.html#ply_nn23

http://www.dabeaz.com/ply/ply.html
http://www.dabeaz.com/ply/ply.html

YACC Specification of Exp0
l We will use Exp0 as our example language

using Ply.

Using Ply
l This is the ‘exp0_gram.py’

file
l In Ply the grammar is

specified in the docstring
of the grammar functions

l Goal is to generate a parser
from this specification

l The lex part is specified in a
separate file ‘exp0_lex.py’

Lex
l The ‘exp0_lex.py’

file

Driver

Running the Parser

Look at ‘parser.out’

YACC Grammars
l For SMALL languages YACC grammars tend

to be very natural
l e.g. Cuppa1 grammar

l However, bottom-up parsing breaks down for
large, production-level languages

Cuppa1 Grammar

Words in capital letters are tokens!

Actions
l Making the generated parser do something

useful.
l In the hand-coded parser you can add code

anywhere in order to make the parser do
something useful…

l In parsers generated by parser generators we
use something called ‘actions’ we insert into the
grammar.

l In Ply actions are inserted into the grammar
specification as Python code.

l Details in the PLY documentation and the book.

Conflicts
l Bottom-up parsers take a global view of

the grammar – they search the right sides of
all rules to find a reduction.

l Top-down parsers take a local view of the
grammar – they only search for applicable
rules within the appropriate non-terminal.

Conflicts
l The global view of grammars in bottom-up

parsers leads to a phenomenon called
conflicts.

l There are two type of conflicts:
l Shift/reduce conflicts
l Reduce/reduce conflicts

Shift/Reduce Conflicts
l The classical example of a shift/reduce conflict is the

if-then-else statement.
l In most programming languages the if-then-else

statement is inherently ambiguous. Consider the two
nested if-statements which can be interpreted in two
distinct ways:

Here we use indentation
to illustrated association

Shift/Reduce Conflicts
l This ambiguity shows up as a shift/reduce

conflict in YACC
l YACC has a default mechanism to deal with this

conflict: always shift
l In this case, that means that the ‘else’ part with always

be associated with the closest ‘if’ statement:

Cuppa1
l The shift/reduce conflict in Cuppa1 is due to

the if-then-else.
l Here is the YACC grammar snippet of the

Cuppa1 statements:

Cuppa1
l We can look at the generated ‘parser.out’ file

to see what YACC has to say about this
conflict:

Reduce/Reduce Conflicts
l Reduce/reduce conflicts are dreaded in the

language implementation community
l Usually that means that you have two

syntactic entities that look very similar but
appear in different contexts

l Because YACC takes a global view of the
rules it cannot detect the context and
therefore it cannot decide which rule to use to
provide a reduce action.

Reduce/Reduce Conflict
Example
l Consider the grammar snippet of a very simple language

that does pattern matching in nested parentheses
l Notice that expressions and patterns look exactly the same

l the difference is that patterns appear on the left side of an
assignment and expressions on the right side.

Right hand sides look Identical!
-> ID

-> ‘(‘ ‘)’)

Reduce/Reduce Conflict
Example
l We would expect that YACC will get confused by the fact that

ID and ‘(‘ ‘)’ are right sides for two sets of rules.

Reduce/Reduce Conflict
Example
l The fact that YACC outright

rejected a set of rules
means that the generated
parser will not work
correctly

l One way to fix this is to
acknowledge that these two
syntactic entities look the
same and therefore we
make them the same
syntactic entity and deal
with differences between
them at the semantic level.

