
Array Implementation
l The key insight here is that arrays can be 

viewed as modifiers to some primitive type 
such as int or float, e.g. int[10]

l This is expressed with the grammar rules:



Array Implementation
l We also need to allow for array initializers of the 

form int[2] a = {1,2} in addition to the scalar 
initializers



Array Implementation
l The last thing we need to address are the contexts array 

expression can appear in:
l Left hand side of an assignment statement
l Within an expression

l We do this with the idea of a storable:



The 
Frontend

This grammar can easily
be transformed into an LL(1)
by factoring common prefixes.



Array Types
l We expand our notion of type tuples with the 

introduction of array types.
l We have to capture the nuances of array types, the 

type
int[10]

is different from the type
int[20]

and is certainly different from the type
int



Array Types
l Adding array types to our type system gives us

l (‘INTEGER_TYPE’,)
l (‘FLOAT_TYPE’,)
l (‘STRING_TYPE’,)
l (‘VOID_TYPE’,)
l (‘FUNCTION_TYPE, <return-type>, <list-of-formal-

arg-types>)
l (‘ARRAY_TYPE’, <elem-type>, <size>)



Array Types & 
the Frontend



Type Checking
l We have to extend our Cuppa4 type checker 

in order to include arrays.



Type Checking



Type Checking



Interpretation



Storables



Call-by-Reference
l The call-by-reference for arrays is implemented in the 

declare_formal_args function



Test Driving the Interpreter


