
Type system implementation
l We extend our Cuppa3 language to Cuppa4 with 

the addition of a type system with four types:
l int
l float
l string
l void

l We also assume that int is a subtype of float and 
float is a subtype of string, that is, a 
compiler/interpreter is allowed to insert widening 
conversions and should flag errors for narrowing 
conversions,

int < float < string



Type system implementation
l We want to be able to write programs such as these:

int inc(int x) return x+1;
int y = inc(3);
put "the result is” + y;

float pow(float b, int p) {
if (p == 0)

return 1.0;
else

return b*pow(b,p-1);
}

float v;
get v;
int p;
get p;
float result = pow(v,p);
put v + ” to the power of “ + p +” is “+result;



Type system implementation: 
Syntax

New additions to the language
are shown in bold face.



Type system implementation: 
Semantics
l At the semantic level we annotate all ASTs 

with type information
l We use type propagation to check that 

expressions/statements are properly typed.
l Type propagation is the systematic tagging of an 

AST from leafs up with type information.



Type system implementation: 
Semantics
l Consider the simple example:

int y;
int x;
y = 3;
x = y + 1;

stmtlist

stmt

stmt

=

y 3

=

x +

y 1



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int}

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int} {int}

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int} {int}

{int}

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int} {int}

{int}{int}

a

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int} {int}

{int}{int}

a

{int}

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider the simple example:

stmtlist

stmt

stmt

=

y 3

=

x +

y 1{int} {int}

{int}{int}

a

{int} {int}

a

int y;
int x;
y = 3;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1

float y;
int x;
y = 3.7;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float}

float y;
int x;
y = 3.7;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float} {int ® float}

float y;
int x;
y = 3.7;
x = y + 1;

Widening
conversion



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float} {int ® float}

{float}

float y;
int x;
y = 3.7;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float} {int ® float}

{float}{int}

r

float y;
int x;
y = 3.7;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float} {int ® float}

{float}{int}

r

{float}

float y;
int x;
y = 3.7;
x = y + 1;



Type system implementation: 
Semantics
l Consider this example which has a typecheck 

error:
float y;
int x;
y = 3.7;
x = y + 1;

stmtlist

stmt

stmt

=

y 3.7

=

x +

y 1{float} {int ® float}

{float}{int}

r

{float} {float}

a



Type system implementation: 
Semantics
l Here is an example with a function call:

int inc(int i) return i+1;
int x;
x = inc(1); stmtlist

stmt

=

x callexpr

inc 1



Type system implementation: 
Semantics
l Here is an example with a function call:

int inc(int i) return i+1;
int x;
x = inc(1); stmtlist

stmt

=

x callexpr

inc 1{f:int®int}

We have to track function symbols, both for their formal parameter types and return types.



Type system implementation: 
Semantics
l Here is an example with a function call:

int inc(int i) return i+1;
int x;
x = inc(1); stmtlist

stmt

=

x callexpr

inc 1{f:int®int} {int}



Type system implementation: 
Semantics
l Here is an example with a function call:

int inc(int i) return i+1;
int x;
x = inc(1); stmtlist

stmt

=

x callexpr

inc 1{f:int®int} {int}

{int}



Type system implementation: 
Semantics
l Here is an example with a function call:

int inc(int i) return i+1;
int x;
x = inc(1); stmtlist

stmt

=

x callexpr

inc 1{f:int®int} {int}

{int}{int}

a



Type system implementation: 
Semantics
l Here is an example with a function call and a 

type error:
int inc(int i) return i+1;
int x;
x = inc(3.7); stmtlist

stmt

=

x callexpr

inc 3.7



Type system implementation: 
Semantics
l Here is an example with a function call and a 

type error:
int inc(int i) return i+1;
int x;
x = inc(3.7); stmtlist

stmt

=

x callexpr

inc 3.7{f:int®int}



Type system implementation: 
Semantics
l Here is an example with a function call and a 

type error:
int inc(int i) return i+1;
int x;
x = inc(3.7); stmtlist

stmt

=

x callexpr

inc 3.7{f:int®int} {float}

r



Type System Implementation
l We will implement a static type checker



Frontend
l The frontend is the Cuppa3 frontend with 

explicit type information.
l The changes necessary are simple 

extensions to the Cuppa3 frontend.



Frontend

(float,float) → float



Symbol Table
l Almost identical symbol table!
l We are using the same approach as we did in 

Cuppa3:
l Use tags in the symbol table to figure out what kind of 

types we bound into the symbol table.
l We have to keep track of the return types of 

functions…we do that at the block scope level.



The Type Checker
l As we saw, the type checker is a tree walker
l Turns out that out that it looks very similar to an interpretation 

walker with one important difference:
☞ It computes TYPES rather than values.

l Types for us are tuples where the first component of the tuple 
tells us what kind of type we are looking at, e.g.
l (‘INTEGER_TYPE’,)
l (‘STRING_TYPE’,)

l We are using tuples because complex types such as function 
types need to store additional information such return type and 
argument types, e.g.



The Type Checker
l Central to our implementation is the type promotion table that 

implements our type hierarchy.
l We use the type promotion table to implement our type propagation and 

type checking

Note: function types are not supported in our type hierarchy

cuppa4_types.py



The Type Checker
l The type checker uses a number of tables to coerce types

cuppa4_types.py

The functions ‘str’ and ‘float’ are Python
built-ins.



The Type Checker
l Interface functions to tables

cuppa4_types.py



The Tree Walker
l Architecture wise 

looks like all our 
other tree walkers

cuppa4_typecheck.py



The Tree Walker - Statements

No value computation, just
type propagation!



The Tree Walker - Declarations

Note: we only store type info in the symtab.



The Tree Walker - Expressions

No value computation, just
type propagation!



The Tree Walker - Calls

No value computation, just
type propagation!



The Interpreter Tree Walk
l The interpreter tree walker walks the type 

checked AST and computes…wait for it…
☞ Values! 

Well, actually we compute type-value tuples.

l It uses the type coercion table.
l Look up appropriate type conversion functions



The Interpreter Tree Walk --
Expressions

Very little error checking!
All that is done in the type
checker!



The Interpreter Tree Walk --
Statements



The Interpreter Tree Walk –
Handle Call



Running the Interpreter


