
Type Systems
l As we saw previously, any programming language that

has some complexity to it allows us to create
syntactically correct statements that semantically do not
make any sense:

declare z (x) return x+1;

put z+1; // ???

• The error in the expression can easily be caught by
an interpreter or compiler by tagging the operands
with type names: z.{function} + i.{int}

• Now it is simple for the language processor to find the
problem: it is only allowed to apply addition to {int}
terms, e.g., j.{int} + i.{int}

Chap 11

Type Systems
l A principled approach to tagging terms and

expressions with type names is called a type system
l Every modern programming language has one

Why do we use type systems?

l Types allow the language system to assist the developer
in writing better programs. Type mismatches in a
program usually indicate some sort of programming
error.
l Static type checking – check the types of all statements and

expressions at compile time.
l Dynamic type checking – check the types at runtime.

l Languages with a static type system can be type
checked dynamically and statically

l Languages with a dynamic type system can only be type
checked dynamically

l New research: gradual typing – type check as much as
possible statically and then do the rest dynamical.

Types

A Type is a Set of Values

Consider the statement:

int n;

Here we declare n to be a variable of type int; what we mean, n can take on any
value from the set of all integer values.

Also observe that the elements in a type share a common representation: each
element is encoded in the same way (float, double, char, etc.)

Also, all elements of a type share the same operations the language supports
for them.

Types
Def: A type is a set of values.

Def: A primitive type is a type a programmer can use but not define.

Def: A constructed type is a user-defined type.

Example: Java, primitive type

float q;

type float Þ set of all
possible floating point values

q is of type float, only
a value that is a member
of the set of all floating point
values can be assigned to q.

Types

Example: Java, constructed type

class Foobar { int i; String s; };

Foobar c = new Foobar();

Now the variable c only accepts values that are members of type Foobar;
F object instantiations of class Foobar; objects are the values of type Foobar..

Types

Example: C, constructed type

int a[3];

the variable a will accept values
which are arrays of 3 integers. e.g.: int a[3] = {1,2,3};

int a[3] = {7,24,9}

We will have more to say about this later on.

Subtypes
l We saw that the notion of a type as a set of

values is a nice model for explaining variable
declarations and object-oriented structures

l But it is also essential to developing the
notion of a subtype

Subtypes
Def: a subtype is a subset of the elements of a type.

Example: Java

‘Short’ is a subtype of ‘int’, that is, all the values in set ‘short’ are
also in set ‘int’: short Ì int

Observations:
(1)converting a value of a subtype to a value of the supertype is

called a widening type conversion. (safe)
(2)converting a value of a supertype to a value of a subtype is

called a narrowing type conversion. (not safe - information loss)

Example: Java

‘Float’ is a subtype of ‘double’ (all the values in set ‘float’ are also
in set ‘double)’: float Ì double

Subtypes
Consider this example in Java with an implicit narrowing
conversion:

int i = 33000;
short j = i; //problematic, short is only 2 bytes, overflow!

On the other hand this example in Java with an implicit widening
conversion has no problems:

short i = 20000;
int j = i;

C Compilers/interpreters will often insert widening conversions but
will flag errors when a supertype needs to be converted to a
subtype.

Subtypes
l An important implication of subtypes in

programming languages is the notion of type
hierarchies

l Here the types of a language are ordered
along the subtype relation, e.g. in Java
l int Ì float Ì string

Type Equivalence
I. Name Equivalence – two objects are of the same type of and only

if they share the same type name.

Example: Java

Class Foobar {
int i;
float f;

}

Class Goobar {
int i;
float f;

}

Foobar o = new Goobar();

Error; even though the types look
the same, their names are different,
therefore, Java will raise an error.

FJava uses name equivalence

Type Equivalence
II. Structural Equivalence – two objects are of the same type if and only if

they share the same type structure.

Example: ML
- type person = int * int * string * string;
- type mytuple = int * int * string * string;
- val joe:person = (38, 185, “married”, “pilot”):mytuple;

Even though the type names are different, ML correctly
recognizes this statement.

F ML uses structural equivalence.

Think of this as:

class Person {
int age;
int weight;
String mstatus;
String profession;

}

Polymorphism
l An interesting implication of type systems is

polymorphism:
l Function overloading
l Subtype polymorphism

Def: A function is polymorphic if it has at
least two possible types.

polymorphism º comes from Greek meaning ‘many forms’

Polymorphism
Function Overloading

Def: An overloaded function is one that has at least two
definitions, all of different types.

Example: In Java the ‘+’ operator is overloaded.

String s = “abc”.{String} + “def”.{String} ;

int i = 3.{int} + 5.{int} ;

Polymorphism

Subtype Polymorphism – essential for OO programming!

Def: A function exhibits subtype polymorphism if one or more
of its formal parameters has subtypes.

Polymorphism

Example: Java

void g (double a) { ... }

int Ì double
float Ì double
short Ì double
byte Ì double
char Ì double

all legal types that can be passed to function ‘g’.

int i = 10;
g(i);

Legal because of subtype polymorphism

Polymorphism
Example: Java

class Cup { ... };
class CoffeeCup extends Cup { ... };
class TeaCup extends Cup { ... };

TeaCup

CoffeeCupCup

Supertype

Subtype

void fill (Cup c) {...}

TeaCup t = new TeaCup();
CoffeeCup k = new CoffeeCup();

fill(t);
fill(k); subtype polymorphism

widening type conversion: TeaCup ® Cup

safe!

TeaCup t = new TeaCup();
Cup c = t;

