Scope & Symbol Table

Most modern programming languages have some
notion of scope.

Scope defines the “lifetime” of a program symbol.

If a symbol is no longer accessible then we say that
it is “out of scope.”

The simplest scope is the “block scope.”

With scope we need a notion of variable declaration
which allows us to assert in which scope the
variable is visible or accessible.

Read Chap 7

Cuppa2

e We extend our Cuppal language with
variable declarations of the form

declare x = 10:;

e Declares the variable x in the current scope
and initializes it to the value 10

e |f the current scope is the global (outermost)
scope then we call x a “global” variable.

© o000 Ut W

Cuppa2 Grammar

Listing 7.1: Grammar for the Cuppa2 language.

stmt_list : (stmt)x*
stmt : declare ID (= exp)? ;? -
| ID = exp ;?
| get ID ;?
| put exp ;?
| while \(exp \) stmt
| if \(exp \) stmt (else stmt)?
| \{ stmt_list \}
exp : exp_low
exp_low exp_med ((== | =<) exp_med)*
exp_med exp_high ((+ | -) exp_high)=x*
exp_high : primary ((\x | /) primary)x*
primary INTEGER
| ID
[NC exp \)
| - primary
| not primary
ID : <any valid variable name>
INTEGER : <any valid integer number> | Sstmt : declare ID (= exp)? ;?

Notice that the initializer for the declaration is optional.

Cuppa2 Frontend :

def stmt(stream):
token = stream.pointer()
if token.type in ['DECLARE']:
stream.match('DECLARE")
id_tk = stream.match('ID"')
if stream.pointer().type in ['ASSIGN']:
stream.match('ASSIGN')
e = exp(stream)
else:

cuppa2_fe.py

£ = e - L 3 o b | e L = i i £
N7 init+i1al17er aAacciime e
1T NO 1nlitTlaltlzer assume aeili

e = ('INTEGER', 0)
if stream.pointer().type in ['SEMI']:
stream.match('SEMI')

return ('DECLARE', ('ID', id_tk.value), e) -
elif token.type in ['ID']:

The relevant piece of code in the frontend.

Cuppa2

e \We can now write properly scoped programs
e Consider:

declare x = 1;

{
declare x = 2;
put x;

}

{
declare x = 3;
put x;

}
put X;

Variable Shadowing

e An issue with scoped declarations is that inner
declarations can “overshadow” outer declarations

e Consider:

declare x = 2;

{

declare x = 3;

{
declarey = x + 2;
puty;

}

}

What is the output of the program once it is run?

Variable update

e A variable update can be outside of our

current scope.
e Consider

declare x = 2;

{
declare y = 3;
X=y+X
put x;

}
put Xx;

Symbol Tables

e To deal with programs like that we need
something more sophisticated for variable
lookup than a dictionary.

- a dictionary stack

e This stack needs to be able to support the
following functionality
Declare a variable (insertion)
Lookup a variable
Update a variable value

Semantic Rules for Variable
Declarations

e Here are the rules which we informally used
In the previous examples:

The ‘declare’ statement inserts a variable
declaration into the current scope

a variable lookup returns a variable value from the
current scope or the surrounding scopes

Every variable needs to be declared before use

No variable can be declared more than once In
the current scope.

Symbol Tables

e Design:

we have a class SymTab that:

Holds a stack of scopes

= scoped_symtab

Defines the interface to the symbol table

= push_scope, pop_scope, declare_sym, etc
By default, SymTab is initialized with a single
scope on the stack — the global scope.

Symbol Tables

Symbol Table

Global Scope

Current Scope Pointer

Local Scope

declare x = 2;

{
declarey = 3;
X=y+X
put X;

}

put x;

Symbol Tables

Symbol Table

Global Scope

Current Scope Pointer

Local Scope

declare x;

get x;

If (0 <=Xx)

{
declare i = x;
put i;

}

else

{
declare j=-1* x;
put j;

}

put x;

Symbol Tables

Symbol Table

Global Scope

Current Scope Pointer

Local Scope

Local Scope

declare x = 2;

{

declare x = 3;

{

declarey = x + 2;
puty;
}

Symbo

cuppa2_symtab.py

CURR_SCOPE = 0

class SymTab:

__init__(self):
global scope dictionary must always be present
self.scoped_symtab = [{]]

push_scope(self):
push a new dictionary onto the stack - stack grows to the left
self.scoped_symtab.insert (CURR_SCOPE,{})

pop_scope(self):
pop the left most dictionary off the stack
if len(self.scoped_symtab) == 1:
raise ValueError("cannot pop the global scope")
else:
self.scoped_symtab.pop(CURR_SCOPE)

declare_sym(self, sym, init):
declare the symbol in the current scope: dict @ position @

lookup_sym(self, sym):
find the first occurence of sym in the symtab stack
and return the associated value

update_sym(self, sym, val):
find the first occurence of sym in the symtab stack
and update the associated value

Symbol Tables

def declare_sym(self, sym, init):

declare the symbol in the current scope: dict @ position @

first we need to check whether the symbol was already declared
at this scope

if sym in self.scoped_symtab[CURR_SCOPE]:
raise ValueError("symbol {} already declared".format(sym))

enter the symbol in the current scope
scope_dict = self.scoped_symtab[CURR_SCOPE]
scope_dict[sym] = init

def lookup_sym(self, sym):
find the first occurence of sym in the symtab stack
and return the associated value

n_scopes = len(self.scoped_symtab)

for scope in range(n_scopes):
if sym in self.scoped_symtab[scope]:
val = self.scoped_symtab[scopel.get(sym)
return val

not found
raise ValueError("{} was not declared".format(sym))

Symbol Tables

def update_sym(self, sym, val):
find the first occurence of sym in the symtab stack

and update the associated value

n_scopes = len(self.scoped_symtab)

for scope in range(n_scopes):
if sym in self.scoped_symtab[scope]:
scope_dict = self.scoped_symtab[scope]
scope_dict[sym] = val
return

not found
raise ValueError("{} was not declared".format(sym))

Interpret
Walker

Note: Same as Cuppa1
interpreter except for the
addition of the declaration
statement and additional
functionality in block
statements and variable
expressions.

cuppaZ2_interp_walk.py

def walk(node):

type = node[0]
if type in dispatch:
node_function = dispatch[typel
return node_function(node)
else:

raise ValueError("walk: unknown tree node type:

dispatch = {
'STMTLIST' : stmtlist,
'DECLARE' : declare_stmt, .
"ASSIGN' : assign_stmt,
GEE : get_stmt,
'PUT' ¢ put_stmt,
'WHILE' : while_stmt,
O s ifastmt,
'NIL' 5 (ghklls
'BLOCK' : block_stmt,
"INTEGER' : integer_exp,
LT : id_exp,
'PAREN' . paren_exp,
'PLUS' : plus_exp,
'MINUS' : minus_exp,
'MUL' : mul_exp,
'DIV' : div_exp,
"EQ' ! eq_exp,
dEES : le_exp,
'"UMINUS' : uminus_exp,
'NOT' ¢ not_exp

1] + .type)

X X
)® e
) ®

Interpret Walker

def declare_stmt(node):
(DECLARE, (ID, name), exp) = node

value = walk(exp)
symbol_table.declare_sym(name, value)

return None I

def block_stmt(node):

(BLOCK, stmt_list) = node

symbol_table.push_scope() <
walk(stmt_list)

symbol_table.pop_scope() -

return None

def

def assign_stmt(node):
(ASSIGN, (ID, name), exp) = node

value = walk(exp)
symbol_table.update_sym(name, value)

1

return None

get_stmt(node):

(GET, (ID, name)) = node

s = input("Value for " + name + '? ')
try:

value = int(s)
except ValueError:

raise ValueError("expected an integer value for " + name)
symbol_table.update_sym(name, value)

|

return None

That’s it — everything else is the same as the Cuppa1 interpreter!

Syntactic vs Semantic Errors

e Grammars allow us to construct parsers that
recognize the syntactic structure of
languages.

e Any program that does not conform to the
structure prescribed by the grammar is
rejected by the parser.

e We call those errors “syntactic errors.”

Syntactic vs Semantic Errors

Semantic errors are errors in the behavior of the
program and cannot be detected by the parser.

Programs with semantic errors are usually syntactically
correct

A certain class of these semantic errors can be caught

by the interpreter/compiler. Consider:

declare x = 10;

put x + 1;

declare x = 20;

put x + 2;
Here we are redeclaring the variable ‘x’ which is not
legal in many programming languages.

Many other semantic errors cannot be detected by the
interpreter/compiler and show up as “bugs” in the
program.

Symbol Tables

Symbol Table

Global Scope

Current Scope Pointer

declare x = 10;
put x + 1;
declare x = 20;
put x + 2;

Symbol Tables

Symbol Table

Global Scope

Current Scope Pointer

X=X+1;
put X;

