
A Basic Compiler

⚫ At a fundamental level compilers can be 

understood as processors that match AST 

patterns of the source language and translate 

them into patterns in the target language.

⚫ Here we will look at a basic compiler that 

translates Cuppa1 programs into 

exp1bytecode.



Reading

⚫ Chap 6



A Basic Compiler

Cuppa1 

Exp1bytecode



A Basic Compiler

⚫ Consider for example the AST pattern for the 
assignment statement in Cuppa1,
⚫ (‘ASSIGN’, (‘ID’, name), exp) 

⚫ We could easily envision translating this AST 
pattern into a pattern in Exp1bytecode as 
follows,
⚫ store <name> <exp>; 

⚫ where <name> and <exp> are the appropriate 
translations of the variable name and the 
assignment expression from Cuppa1 into 
Exp1bytecode.



A Basic Compiler

⚫ In our case it is not that difficult to come up 

with pattern translations for all the non-

structured statements and expressions in 

Cuppa1. 

⚫ For all the non-structured statements we 

have the pattern translations,



A Basic Compiler

⚫ And for the expressions we have,



A Basic Compiler

⚫ We have to “simulate” the behavior of the Cuppa1 “while” loop with 

jump statements in Exp1bytecode. 

⚫ One way to translate the AST pattern for the while loop into a code 

pattern in Exp1bytecode is,

Note: labels cannot appear by themselves, so we have to put a noop instruction here

in order to make this a legal pattern.



A Basic Compiler

⚫ We can do something similar with if-then statements,

⚫ Finally, adding the else-statement to the if-then statement we have,



A Basic Compiler Architecture

⚫ Our basic compiler consists of:

⚫ The Cuppa1 frontend

⚫ A code generation tree walker



Frontend Pattern Translation

⚫ Recall that the Cuppa1 frontend generates an AST for a source 
program,

We can easily apply our pattern translations to generate Exp1bytecode: 



Codegen Tree Walker

⚫ The code generator for our compiler is a tree 

walker that walks the Cuppa1 AST and for 

each AST pattern that appears in a pattern 

translation rule it will generate the 

corresponding target code.

⚫ Cuppa1 statement patterns will generate 

Exp1bytecode instructions on a list

⚫ Cuppa1 expression patterns will generate 
Exp1bytecode expressions returned as strings.



Codegen

⚫ Recall the pattern translation,
⚫ (‘GET’, (‘ID’, name)) => input <name>;

⚫ The codegen tree walker has a function for that,

cuppa1_codegen.py

Even though the translation rule for the get

statement demands that we also generate the 
semicolon as part of the translation,
we delay this until we generate the actual 

machine instructions.

Note: We use Python’s ability to do pattern matching on tuples!

Note: We have the <name> = name identity translation.



Codegen

⚫ Recall the pattern translation,
⚫ (‘ASSIGN’, (‘ID’, name), exp) => store <name> <exp>;

⚫ The codegen tree walker has a function for that,

cuppa1_codegen.py

Note: We have the translation <exp> = walk(exp).



Codegen
⚫ Recall the pattern translation,

⚫ The codegen tree walker has a function for that,

cuppa1_codegen.py

Note:

<cond> = walk(cond)
<body> = walk(body)



Codegen
⚫ Recall the pattern 

translation for binops,

⚫ The codegen tree walker 
has a function for that,
⚫ <c1> = walk(c1)

⚫ <c2> = walk(c2)

cuppa1_codegen.py



Codegen
⚫ What remains to be looked at is how the 

tree walker deals with statement lists. 

⚫ And how the walker deals with Nil nodes 

in a statement.

cuppa1_codegen.py



Codegen

cuppa1_codegen.py



Running Codegen
Consider our AST:

Generated instruction list:



Running Codegen

Note: everything is a string

in the instruction tuple list
making code generation
very easy.



Formatting the Output

Convert the instruction tuple list into

a printable target program.



Running the Phases of the 

Compiler



Running the Compiler

{ }



Compiler Correctness

⚫ We now have two ways to execute a Cuppa1 

program:

⚫ We can interpret the program directly with the 

Cuppa1 interpreter.

⚫ We can first translate the Cuppa1 program into 
Exp1bytecode and then execute the bytecode in 

the abstract bytecode machine.

A compiler is correct if the translated program, when executed, 

gives the same results as the interpreted program.



Compiler Correctness



Assignment 

⚫ Assignment #3 – see BrightSpace.


	Slide 1: A Basic Compiler
	Slide 2: Reading
	Slide 3: A Basic Compiler
	Slide 4: A Basic Compiler
	Slide 5: A Basic Compiler
	Slide 6: A Basic Compiler
	Slide 7: A Basic Compiler
	Slide 8: A Basic Compiler
	Slide 9: A Basic Compiler Architecture
	Slide 10: Frontend Pattern Translation
	Slide 11: Codegen Tree Walker
	Slide 12: Codegen
	Slide 13: Codegen
	Slide 14: Codegen
	Slide 15: Codegen
	Slide 16: Codegen
	Slide 17: Codegen
	Slide 18: Running Codegen
	Slide 19: Running Codegen
	Slide 20: Formatting the Output
	Slide 21: Running the Phases of the Compiler
	Slide 22: Running the Compiler
	Slide 23: Compiler Correctness
	Slide 24: Compiler Correctness
	Slide 25: Assignment 

