
Processing ASTs: 
Tree Walking
l The recursive structure of trees gives rise to 

an elegant way of processing trees: tree 
walking. 

l A tree walker typically starts at the root node 
and traverses the tree in a depth first manner.



Processing ASTs: 
Tree Walking

Consider the following:

3*2+4



Processing ASTs: 
Tree Walking A simple tree walker for our expression tree



Processing ASTs: 
Tree Walking A simple tree walker for our expression tree

We just interpreted the expression tree!!!



Processing ASTs: 
Tree Walking

l Notice that this 
scheme mimics what 
we did in the syntax 
directed interpretation 
schema,

l But now we interpret 
an expression tree 
rather than the implicit 
tree constructed by 
the parser.

A simple tree walker for our expression tree



Tree Walkers are Plug'n Play
l Tree walkers exist completely separately from the AST.
l Tree walkers plug into the AST and process it using their 

node functions.



Tree Walkers are Plug'n Play
l There is nothing to prevent us from plugging in 

multiple walkers during the processing of an AST, 
each performing a distinct phase of the processing.



An Interpreter for Cuppa1



An Interpreter for Cuppa1
cuppa1_interp_walk.py



An Interpreter for Cuppa1 cuppa1_interp_walk.py

Pattern matching on AST nodes!



An Interpreter for Cuppa1 cuppa1_interp.py

Command line interface

cuppa1_state.py



Running the Interpreter



A Pretty Printer with a Twist
l Our pretty printer will do the following things:

l It will read the Cuppa1 programs and construct an 
AST

l It will compute whether a particular variable is 
used in the program

l It will output a pretty printed version of the input 
script but will flag assignment/get statements to 
variables which are not used in the program

èThis cannot be accomplished in a syntax directed manner – therefore 
we need the AST



PrettyPrinting the Language
// list of integers
get x;
i = x;
while (1 <= x) {

put x;
x = x - 1;

}

get x
i = x // -- var i unused --
while ( 1 <= x )
{

put x
x = x - 1

}

? We need an IR because usage will always occur after definition – cannot be
handled by a syntax directed pretty printer.



The Pretty Printer is a 
Translator!
l The Pretty Printer with a Twist fits neatly into our 

translator class
l Read input file and construct AST
l Usage/Semantic Analysis
l Generate output code, flagging unused assignments

Syntax
AnalysisProgram

Text

IR

Semantic
Analysis

IR
Code

Generation
Target

Language

Variable definition/usage analysis



Pretty Printer Architecture

Frontend + 2 Tree Walkers



PP1: Variable Usage
l The first pass of the pretty printer walks the AST 

and looks for variables in expressions
l only those count as usage points. 

l A peek at the tree walker for the first pass,
cuppa1_pp1_walk.py

shows that it literally just walks the tree doing 
nothing until it finds a variable in an expression. 

l If it finds a variable in an expression then the 
node function for id_exp marks the variable in 
the symbol table as used,



PP1: Variable Usage

Just Walking the Tree!



PP1: Variable Usage

Just Walking the Tree!



PP1: Variable Usage
l According to the tree walker of our first phase 

a variable appearing in the symbol table has 
one of two states after the tree walker 
completes:
l ‘Defined’ – a variable was defined in the program 

but never used
l ‘Used’ – the value of a variable is being accessed, 

that is the variable is being used in an expression.
l We are interested in the first scenario…



PP1: Variable Usage
Testing the tree walker



PP2: Pretty Print Tree Walker
l The tree walker for the second pass walks the AST 

and compiles a formatted string that represents the 
pretty printed program.

Concatenate the string
for each stmt into one long
string.



PP2: Pretty Print Tree Walker

Indent() and indent_level keep track of the code indentation for formatting purposes.



Top Level Function of PP

Top level function



The Cuppa1 PP
Testing the pretty printer



Assignment
l Reading: Chap 5


