
Abstract Syntax Trees
l Our Exp1bytecode language was so 

straightforward that the best IR was an 
abstract representation of the instructions

l In more complex languages, especially 
higher-level languages it usually is not 
possible to design such a simple IR

l Instead, we use Abstract Syntax Trees 
(ASTs)

Chap 5



Reading
l Chap 5



Abstract Syntax Trees
l One way to think about ASTs is as parse trees with 

all the derivation information deleted



Abstract Syntax Trees
l Because every valid program has a parse tree, it is 

always possible to construct an AST for every valid 
input program.

l In this way ASTs are the IR of choice because it 
doesn’t matter how complex the input language, 
there will always be an AST representation.

l Besides being derived from the parse tree, AST 
design typically follows three rules of thumb:
l Dense: no unnecessary nodes
l Convenient: easy to understand, easy to process
l Meaningful: emphasize the operators, operands, and the 

relationship between them; emphasize the computations



Tuple Representation of ASTs
l A convenient way to represent AST nodes is with the following 

structure,
l (TYPE [, child1, child2,...]) 

l A tree node is a tuple where the first component represents the 
type or name of the node followed by zero or more components 
each representing a child of the current node.

l Consider the abstract syntax tree for + x - y x, 

$ python3
>>> from dumpast import dumpast
>>> ast = ('+','x',('-','y','z'))
>>> dumpast(ast)

(+ x 
|(- y z))

>>> 

The dumpast function will become your best friend!



The Cuppa1 Language
l Our next language is a simple high-level 

language that supports structured 
programming with ‘if’ and ‘while’ statements.

l However, it has no scoping and no explicit 
variable declarations.



The Cuppa1 Language

// list of integers
get x;
while (1 <= x)
{

put x;
x = x - 1;

}

Infix Expressions!

Problem: No precedence levels given!



The Cuppa1 Language
l Without precedence levels it is possible to 

create incorrect parse trees
l Solution: “Precedence Climbing”

l Partition operators into precedence classes
l Write grammar rules for each precedence class 

starting with the lowest operator precedence 
class.



The Cuppa1 Language

Observe the rules for the operators: instead
of the standard recursive term structure rules
we treat operator expressions as LISTS of
syntactic units

The prerequisite left-associativity of the operators comes naturally because LL(1)
parsers execute the rule bodies from left to right.



The Lexer



Tokenized Grammar & 
Lookahead Sets

We build the corresponding
LL(1) parser in the usual fashion.



The Cuppa1 Frontend
l A frontend is a parser that constructs an AST
l Each parsing function returns a snippet of AST



AST: Statements
cuppa1_fe.py



AST: Statement Lists
cuppa1_fe.py



AST: Expressions cuppa1_fe.py

This should look familiar,
similar structure as for the 
expressions in exp1bytecode
language.



Running the Frontend



Running the Frontend


