
Multi-Symbol Words - Lexical
Analysis
l In our exp0 programming language we only had words of

length one
l However, most programming languages have words of

lengths more than one
l The lexical structure of a programming language specifies

how symbols are combined to form words
l Not to be confused with the phrase structure which tells us how

words are combined to form phrases and sentences
l The lexical structure of a programming language can be

specified with regular expressions
l whereas the phrase structure is specified with grammars.

l The “parser” for the lexical structure of a programming
language is called a lexical analyzer or lexer

l The output of a lexer is usually given in terms of tokens.

Read Chap 2

Multi-Symbol Words - Lexical
Analysis
l This gives us the following hierarchy:

symbol

word

phrase

sentence

Lexical structure (regular expressions)

Phrase structure (grammars)

The Calc Language

l This language allows us to write expression like,
l 125
l + 36 14
l (+ 1 2 3)
l Note that actual values and op names are now

encoded as tokens in the grammar, e.g. NUM, PLUS

EBNF notation stating that exp can appear zero or more times

Tokens

Tokens

Tokens
l The definition of Tokens usually has two parts:

l A token type
l A token value

l For example, in Calc we have
l a token type PLUS with a token value of ‘+’
l a token type NUM with an integer token value.

l That means lexers turn character/symbols
streams into token streams

l Token streams is what is read by parsers.

The Syntactic Analysis Phase

The Lexer
l The lexer includes the tokenizer and

implements a token stream with the following
interface:

Note: same interface as our earlier InputStream class.

Calc Tokens

Specifying Tokens
l In our calc_lexer.py file all we need to do is to define the

token types and values
l The rest of the code is boiler plate implementing the

tokenizer and lexer
l We use regular expression to specify the token values

Regular Expressions
l Each letter A through Z and a through z is a regular expression.
l Each number 0 through 9 is a regular expression.
l Each printable character \(, \), -, \+, etc. is a regular expression.
l If A and B are regular expressions then AB is also a regular expression and represents the

concatenation of the two regular expressions.
l If A is a regular expression then (A) is also a regular expression. Parentheses allow us to group

regular expressions. Just as in grammars, the use of escaped parentheses in regular expressions
is very important because the regular expression (A) is different from the regular expression
\(A\). The former is the grouping of regular expression A and the latter is the concatenation of the
three regular expressions.

l If A and B are regular expressions then A | B is also a regular expression and represents the
choice between regular expression A and regular expression B.

l If A is a regular expression then A? is also a regular expression and specifies the regular
expression A as optional.

l If A is a regular expression then A* is also a regular expression and specifies that the regular
expression A can appear zero or more times. We use the same operator in the EBNF notation for
grammars.

l If A is a regular expression then A+ is also a regular expression and specifies that the regular
expression A can appear one or more times. You can think of A+ as a shorthand for AA*.

Regular Expression
l The regular expression [A-Z] represents a single character

between A and Z. Similarly for [a-z] and [0-9].
l The special characters \n, \t, and \r are also regular expressions

representing the newline character, the TAB character, and the
carriage return character, respectively.

l The dot operator . is a regular expression that represents any
single printable character. Most importantly, it does not represent
the newline character \n.

l The ˆ operator computes the complement of a set. For example,
if we have the regular expression [abc] matching either a,b or c,
then the complement [ˆabc] will match any character other than
a, b, or c. This is useful in conjunction with character classes. For
example, the regular expression [A-Z][ˆA-Z] specifies a word
structure that starts with a capital letter followed by a single
character that is not a capital letter.

Parsing with Lexers
l Good news: the techniques of building top-

down parser we have looked at so far apply
to parsers that use lexers!

l Instead of using lookahead symbol we will
now use lookahead tokens.

Parsing with Lexers
l Consider our calc language again
l We compute the lookahead sets in terms of

tokens

Parsing with Lexers
l Now it is straightforward to build the parser

Parsing with Lexers
l Top-level driver function

Parsing with Lexers
l Running the parser

Class Exercise 1a
l Please see BrightSpace

