Multi-Symbol Words - Lexical
Analysis

e In our exp0 programming language we only had words of
length one

e However, most programming languages have words of
lengths more than one

e The lexical structure of a programming language specifies
how symbols are combined to form words

Not to be confused with the phrase structure which tells us how
words are combined to form phrases and sentences

e The lexical structure of a programming language can be
specified with regular expressions

whereas the phrase structure is specified with grammars.

e The “parser” for the lexical structure of a programming
language is called a lexical analyzer or lexer

e The output of a lexer is usually given in terms of tokens.

Read Chap 2

Multi-Symbol Words - Lexical
Analysis

e This gives us the following hierarchy:

symbol
l ¢ Lexical structure (regular expressions)
word
phrase + Phrase structure (grammars)

l

sentence

The Calc Language

EBNF notation stating that exp can appear zero or more times

Listing 2.7: The grammar for the calc language.

<
1 |explist : (exp)=*
2
3 |exp : NUM <— Tokens
4 | op exp exp x/
5 | LPAREN op exp exp (exp)* RPAREN
6
8 | MINUS

e This language allows us to write expression like,
125
+36 14
(+123)

Note that actual values and op names are now
encoded as tokens in the grammar, e.g. NUM, PLUS

Tokens

e The definition of Tokens usually has two parts:
A token type
A token value

e For example, in Calc we have
a token type PLUS with a token value of ‘+’
a token type NUM with an integer token value.

e That means lexers turn character/symbols
streams Into token streams

e Token streams Is what Is read by parsers.

The Syntactic Analysis Phase |:

Input Token
Stream Tokenizer Stream

—) —) Parser

Lexer

The Lexer

e The lexer includes the tokenizer and

Implements a token stream with the following
Interface:

pointer — a function that points to the current token in the token stream.
next — a function that advances the pointer to the next token.

match — a function matches a token against the current token in the token
stream.

end-of-file — a predicate that returns true if the pointer reached the end of the
token stream.

Note: same interface as our earlier InputStream class.

Calc Tokens s

NUM — a number token describing an actual number in the input stream.
PLUS — a token describing the + operator.

MINUS — a token describing the - operator.

LPAREN — a token describing the left parenthesis.

RPAREN — a token describing the right parenthesis.

$ python3
Python 3.8.5 (default, Sep 4 2020, 02:22:02)
>>> from calc_lexer import tokenize
>>> for t in tokenize("+ 101 25"):
print(t)

Token(PLUS, +)
Token(NUM,101)
Token (NUM, 25)
Token (EOF, \eof)
>>>

Specifying Tokens :

e Inour calc_lexer.py file all we need to do is to define the
token types and values

e The rest of the code is boiler plate implementing the
tokenizer and lexer

e We use regular expression to specify the token values

token_specs = [
('NUM*, r'[0-9]1+'),
('PLUS', r'\+'),
('"MINUS', r'-'),
('"LPAREN', N)
("RPAREN', R’)
('"WHITESPACE', r'[\t\nl+"),
('UNKNOWN', S

]

Regular Expressions

Each letter A through Z and a through z is a regular expression.
Each number 0 through 9 is a regular expression.
Each printable character \(, \), -, \+, etc. is a regular expression.

If A and B are regular expressions then AB is also a regular expression and represents the
concatenation of the two regular expressions.

If Ais aregular expression then (A) is also a regular expression. Parentheses allow us to group
regular expressions. Just as in grammars, the use of escaped parentheses in regular expressions
is very important because the regular expression (A) is different from the regular expression
\(A\). The former is the grouping of regular expression A and the latter is the concatenation of the
three regular expressions.

If Aand B are regular expressions then A | B is also a regular expression and represents the
choice between regular expression A and regular expression B.

If Aiis aregular expression then A? is also a regular expression and specifies the regular
expression A as optional.

If Aiis aregular expression then A* is also a regular expression and specifies that the regular
expression A can appear zero or more times. We use the same operator in the EBNF notation for
grammars.

If Ais aregular expression then A+ is also a regular expression and specifies that the regular
expression A can appear one or more times. You can think of A+ as a shorthand for AA*.

Regular Expression

The regular expression [A-Z] represents a single character
between A and Z. Similarly for [a-z] and [0-9].

The special characters \n, \t, and \r are also regular expressions
representing the newline character the TAB character, and the
carriage return character, respectlvely

The dot operator . Is a regular expression that represents any
single printable character. Most importantly, it does not represent
the newline character \n.

The ~ operator computes the complement of a set. For example,

If we have the regular expression [abc] matching either a,b or c,
then the complement ["abc] will match any character other than
a, b, or c. This is useful in conjunction with character classes. For
example the regular expression [A-Z]["A-Z] specifies a word
structure that starts with a capital letter followed by a single
character that is not a capital letter.

Parsing with Lexers

e Good news: the techniques of building top-
down parser we have looked at so far apply
to parsers that use lexers!

e Instead of using lookahead symbol we will
now use lookahead tokens.

Parsing with Lexers

e Consider our calc language again

e We compute the lookahead sets in terms of
tokens

Listing 2.9: The grammar for the calc language with lookahead sets.
explist : ({NUM,PLUS,MINUS,LPAREN} exp)x*

exp : {NUM} NUM
| {PLUS,MINUS} op exp exp
| {LPAREN} LPAREN op exp exp ({NUM,PLUS,MINUS,LPAREN} exp)* RPAREN

op : {PLUS} PLUS
| {MINUS} MINUS

O~ Uk WNH

Parsing with

Lexers :

e Now it is straightforward to build the parser

def explist(stream):
while stream.pointer().type in ['NUM',

IR IR S [EE T

exp(stream)
return

def op(stream):

token = stream.pointer()

if token.type in ['PLUS']:
stream.match('PLUS")
return

elif token.type in ['MINUS']:
stream.match('MINUS')
return

def exp(stream):
token = stream.pointer()
if token.type in ['NUM']:
stream.match('NUM")
return
elif token.type in ['PLUS','MINUS']:
op(stream)
exp(stream)
exp(stream)
return
elif token.type in ['LPAREN']:
stream.match('LPAREN")
op(stream)
exp(stream)
exp(stream)
while stream.pointer().type in ['NUM', 'PLUS', 'MINUS', 'LPAREN']:
exp(stream)
stream.match('RPAREN")
else:
raise SyntaxError("syntax error at {}".format(token.type))

else:

raise SyntaxError("syntax error at {}".format(token.type))

Parsing with Lexers

e Top-level driver function

try:

def parse():
from calc_lexer import Lexer
from sys import stdin

char_stream = stdin.read()
token_stream = Lexer(char_stream)
explist(token_stream)
if token_stream.end_of_file():

print("parse successful")
else:

raise SyntaxError("bad syntax at {}"

. format(token_stream.pointer()))

except Exception as e:

print("error: " + str(e))

Parsing with Lexers

e Running the parser

$ python3 calc_parser.py
+ 10 25

"D

parse successful

$ python3 calc_parser.py
(+123)

“D

parse successful

$ python3 calc_parser.py
+(+123) 4

"D

parse successful

Assignment

e Assignment #1 -- Please see BrightSpace

	Slide 1: Multi-Symbol Words - Lexical Analysis
	Slide 2: Multi-Symbol Words - Lexical Analysis
	Slide 3: The Calc Language
	Slide 4: Tokens
	Slide 5: The Syntactic Analysis Phase
	Slide 6: The Lexer
	Slide 7: Calc Tokens
	Slide 8: Specifying Tokens
	Slide 9: Regular Expressions
	Slide 10: Regular Expression
	Slide 11: Parsing with Lexers
	Slide 12: Parsing with Lexers
	Slide 13: Parsing with Lexers
	Slide 14: Parsing with Lexers
	Slide 15: Parsing with Lexers
	Slide 16: Assignment

