
The Structure of Programming
Languages
l All language processors perform some kind

of syntax analysis – an analysis of the
structure of the program.

l To make this efficient and effective we need
some mechanism to specify the structure of a
programming language in a straightforward
manner.

èWe use grammars for this purpose.

Reading
l Read Chap 2 in ebook

Grammars
l The most convenient way to describe the structure of

programming languages is using a context-free grammar
(often called CFG or BNF for Backus-Nauer Form).

l Here we will simply refer to grammars with the
understanding that we are referring to CFGs. (there are
many kind of other grammars: regular grammars,
context-sensitive grammars, etc)

Grammars
l Grammars can readily express the structure of phrases in programming

languages
l Grammars allow us to derive valid sentences or programs that are part of the

language by applying the rules of the grammar repeatedly until no further rule
application is possible.

Grammars
l Grammars have 4 parts to them

1. Non-terminal Symbols - these give names to phrase
structures - e.g. program

2. Terminal Symbols - these give names to the tokens in a
language – e.g. x

3. Rules - these describe that actual structure of phrases in
a language – e.g. expression : expression + expression

4. Start Symbol - a special non-terminal that gives a name to
the largest possible phrase(s) in the language

l By convention it is usually the non-terminal defined by the first
rule.

l In our case that would be the program non-terminal

Derivations

Let’s try this with:

Since we were able to derive
our sentence from the start symbol
our sentence is valid!

Parse Trees
l Derivations can also be expressed as parse trees.

Example: The Exp0 Language
stmt_list : stmt stmt_list

| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| \(exp \)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

Start Symbol: prog

Example Exp0 Program:

s x 1 ; p + x 1 ;

Grammars
l A grammar tells us if a sentence belongs to the

language,
l e.g. Does ‘s x 3 ;’ belong to the language?

l We can show that a sentence belongs to the
language by constructing a derivation or a
parse tree starting at the start symbol

Grammars

s x 3 ;

stmt_list

stmt

s var exp ;

x num

Note: constructing the parse tree by filling in the leftmost
non-terminal at each step we obtain the left-most derivation:

stmt_list Þ
stmt stmt_list Þ
s var exp ; stmt_list Þ
s x exp ; stmt_list Þ
s x num ; stmt_list Þ
s x 3 ; stmt_list Þ
s x 3 ;

Constructing the parse tree by filling in the rightmost non-terminal
at each step we obtain the right-most derivation.

stmt_list

“”

3

stmt_list : stmt stmt_list
| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| \(exp \)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

Grammars
l Every valid sentence (a sentence that

belongs to the language) has a parse tree.
l Test if these sentences are valid:

l p x + 1 ;
l s x 1 ; s y x ;
l s x 1 ; p (+ x 1) ;
l s y + 3 x ;
l s + y 3 x ;

stmt_list : stmt stmt_list
| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| \(exp \)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

Parsers
l The converse is also true:

l If a sentence has a parse tree, then it belongs to
the language.

l This is precisely what parsers do: to show a
program is syntactically correct, parsers construct
a parse tree

Top-Down Parsers - LL(1)
l LL(1) parsers start constructing the parse tree at the

start symbol
l as opposed to bottom-up parsers, LR

l LL(1) parsers use the current position in the input
stream and a single look-ahead token to decide how
to construct the next node(s) in the parse tree.

l LL(1)
l Reads input from Left to right.
l Constructs the Leftmost derivation
l Uses 1 look-ahead token.

Top-Down Parsing
Lookahead Set

Consider: p + x 1 ;

stmt_list : {p,s} stmt stmt_list
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} \(exp \)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | {3} 3 | {4} 4 | {5} 5 | {6} 6 | {7} 7 | {8} 8 | {9} 9

For top-down parsing we can think
of the grammar extended with the
one token look-ahead set.

The look-ahead set uniquely identifies
the selection of each rule within a
block of rules

Computing the Lookahead Set

Note: a grammar is a list of rules and a rule is the tuple (non-terminal, body)
Note: a grammar extended with lookahead sets is a list of rules where each rule

is the tuple (non-terminal, lookahead-set, body)

Computing the Lookahead Set

set union operator in Python

Computing the Lookahead Set

grammar G:

stmt_list : stmt stmt_list
| ""

stmt : p exp ;
| s var exp ;

exp : + exp exp
| - exp exp
| \(exp \)
| var
| num

var : x | y | z

num : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |9

grammar GL:

stmt_list : {p,s} stmt stmt_list
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} \(exp \)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | ... | {8} 8 | {9} 9

Computing the Lookahead Set
l Actually, the algorithm we have outlined computes

the lookahead set for a simpler parsing technique
called sLL(1) – simplified LL (1) parsing.

l sLL(1) parsing does not deal with non-terminals that
expand into the empty string in the first position of a
production – also called nullable prefixes.

l All our parsers will be sLL(1)
l Later in the course we will discuss a tool called Ply and we

will have access to another parsing technique called LR(1)
– which is bottom-up parsing

Constructing a Parser
l A sLL(1) parser can be constructed by hand

by converting each non-terminal into a
function

l The body of the function implements the right
sides of the rules for each non-terminal in
order to:
l Process terminals
l Call the functions of other non-terminals as

appropriate

Constructing LL(1) Parsers
l A parser for Exp0

l We start with the grammar for Exp0 extended with the lookahead sets

stmt_list : {p,s} stmt stmt_list
| {""} ""

stmt : {p} p exp ;
| {s} s var exp ;

exp : {+} + exp exp
| {-} - exp exp
| {(} \(exp \)
| {x,y,z} var
| {0,1,2,3,4,5,6,7,8,9} num

var : {x} x | {y} y | {z} z

num : {0} 0 | {1} 1 | {2} 2 | ... | {8} 8 | {9} 9

Constructing LL(1) Parsers

We need to set up some sort of character input
stream. In our case we use the ‘InputStream’ class

Note: all the Python code given in the slides is available in the repl.it VM.

Note: the parser for Exp0 is in ’exp0’

The Stream
Class

It is convenient to map the
input string into a stream
structure.

Constructing LL(1) Parsers

stmt : {p} p exp ;
| {s} s var exp ;

Notice that we are using the look-ahead set to decide which rule to call!

Constructing LL(1) Parsers
Consider the following rule:

stmt_list : {p,s} stmt stmt_list
| {""} ""

Constructing LL(1) Parsers
exp : {+} + exp exp

| {-} - exp exp
| {(} \(exp \)
| {x,y,z} var
| {0…9} num

Constructing LL(1) Parsers

var : { x } x | { y } y | { z } z

Constructing LL(1) Parsers
num : { 0 } 0 | { 1 } 1 | … | { 9 } 9

Constructing LL(1) Parsers
l To pull this all together we add a high-level

parsing function

Running the Parser
l Run the parser in a command shell, in our

case we use the cloud based Linux VM

End of input

Class Exercise
l Please see BrightSpace

Parsers build Parse Trees
l To see that parsers build parse trees in order to prove that a

sentence belongs to a language consider the expression: + x y

Parsing + x y will result in the following tree:
exp

match(+)
exp

var
match(x)

exp
var

match(y)

Parsing function
call tree == parse tree

Our First Language Processor
l Parsers are good because they can tell us if a program is

valid or not
l But we have to extend it with “actions”, code that does

something useful in order to go beyond just parsing
l Idea: Our first language processor parses Exp0 programs

and counts the number of times the value of a variable is
accessed
l Example: s x 1; s x (+ x 1);
l In this program we only access the value of a variable once!

l Note: Scanning for variable names and counting the
number of times a variable name occurs does NOT work,
we need to use a parser that understands the difference
between a variable value reference and a variable storage
reference (rvalues and lvalues, respectively).

Extended Parser

Running the Processor

Assignments
l Read Chapter 2
l Assignment #1 -- see BrightSpace

