
CSC402 Programming
Language

Implementation
Dr. Lutz Hamel

Tyler Hall Rm 251
lutzhamel@uri.edu

Welcome!

Course Objectives
l Provide a solid foundation with respect to programming

language implementation including
l grammar construction
l parsing techniques,
l intermediate representations (tree construction, pattern matching

and tree walking techniques)
l symbol table construction
l code generation

l We will study a number of different programming
language implementation techniques including compilers,
interpreters, and virtual machines.

l You can add domain specific and general programming
language implementations to your tool chest.

Textbook
l Online Textbook

l See BrightSpace

Some Definitions
l Domain Specific Language (DSL)

l In software development a DSL is a programming
language or specification language dedicated to a
particular problem domain, a particular problem
representation technique, and/or a particular
solution technique.‡

l Examples: Html, MSDOS/Linux shell scripts,
game engine scripting languages

‡ Wikipedia

Some Definitions
l General (Purpose) Programming Language‡

l A general purpose programming language is a
programming language designed to be used for writing
software in a wide variety of application domains.

l In many ways a general purpose language only has this
status because it does not include language constructs
designed to be used within a specific application domain
(e.g., a page description language contains constructs
intended to make it easier to write programs that control
the layout of text and graphics on a page).

‡ Wikipedia

Some Definitions
l High-Level Programming Language

l A language that supports data abstraction and
“structured programming”

l e.g. class definitions and while-loops, if-then-else
statements

l Low-Level Programming Language
l A language that does NOT support data

abstraction and “structured programming”
l Most assembly languages and bytecodes fall into

this category

The Structure of Programming
Languages
l A programming language is a formal system of

symbols that are combined to make up larger
structures according to certain rules – the Syntax of
a Programming Language

l The combination of symbols and the larger
structures carry information which language
processors need to decode.

l We will see that the architecture of language
processors is geared towards extracting this
information by accessing the hierarchy of symbols
and structures embedded in programming
languages – Syntax Analysis

The Structure of Programming
Languages
The hierarchy (low to high):

symbol (character)
word (token)
phrase
sentence

Symbols are combined to form words, words are combined to form phrases,
and phrases are combined to form sentences.

A programming language is a collection of valid sentences; a sentence is valid
if the symbols, words, and phrases are combined according to the rules of
the language.

These rules are usually specified using a grammar (more on that later)

The Structure of Programming
Languages
An Example: Function Definition

function inc (int i) { return i + 1; }

Symbol Token

expr

expr stmt

stmt

sentence

• a function definition is a
sentence, this sentence is
a stmt

• the stmt is composed of two
tokens (function, inc), an expr,
and a stmt

• the expr is composed of four
tokens: (,),int,i

•the stmt is composed of a token
(return) and an expr

• the expr is composed of three
tokens: I, +, 1

C Language processors are built
to extract this kind of hierarchy
and process it.

Note: the structure of a language is also called the syntax.

tokentoken

token

The Structure of Programming
Languages
l Programming text page vs. Symbol Stream

l We usually represent programs as 2D text
i=0
while i < 10 do

print i
i=i+1

enddo

l However, to the language processor this appears
to be just a stream of symbols:
i=0<cr>while<sp>i<sp><<sp>10<sp>do<cr><tab>print<sp>i<cr>…

l Here, <cr>, <sp>,and <tab> are special symbols

The Behavior of Programming
Languages
l In addition to specifying the syntax of a

programming language we also need to specify
its behavior – the Semantics of the Language

l Every programmer instinctively knows what the
following program fragment does:

i=0
while i < 10 do

print i
i=i+1

enddo

l But we need to tell the language processor what
this program means; how it should behave.

The Behavior of Programming
Languages

Example of a specification:

Syntax:
WhileStatement:

while Expression do Statement enddo

Semantics:
The while statement executes an Expression and a Statement repeatedly
until the value of the Expression is false.

The Expression must have type Boolean, or an error occurs.

A while statement is executed by first evaluating the Expression:
1. If the value is true, then the contained Statement is executed. If execution

of the Statement completes normally, then the entire while statement is
executed again, beginning by re-evaluating the Expression.

2. If the value is false, no further action is taken and the while statement
terminates.

The Behavior of Programming
Languages

l The specification of general
purpose programming languages
can be very complex.

l In the case of Java this is a 700
page book!

l Domain specific programming
languages tend to be less
complex and therefore much
easier and faster to implement.

The Java Language Specification, Gosling, Joy, Steele, Bracha, 3rd edition, Wiley, 2005.

Building Blocks of Language
Processors
l Most programming language processors are

made up of one or more three main building
blocks:
l Syntax Analysis – program text/structure analysis
l Semantic Analysis – program behavior analysis
l Code Generation

Syntax Analysis

l The syntax analysis reads the program text
and produces an intermediate representation
(IR)

l The IR is an abstract representation of the
program text

Syntax
Analysis

Program
Text

Intermediate
Representation (IR)

Semantic Analysis

l The semantic analysis reads the IR and analyzes the
encoded behavior

l The semantics analysis typically outputs an annotated
version of the IR

l These annotations insure the correct behavior of the
program, for example, memory space for a declared
variable.

Semantic
AnalysisIR Annotated IR

Code Generation

l The semantic analysis reads the IR and translates it into
the target language

l The target language could be a high level language,
assembly code, or byte code.

l The target code can also be a spreadsheet that
summarizes data described with the IR, etc.

Code
GenerationIR

Target
Language

The Structure of Language
Processors
l We can now plug these building blocks

together in different configuration in order to
obtain a variety of language processors.

l In particular, we can configure these building
blocks as:
l Interpreter
l Translator/Compiler
l Simple Translator

The Interpreter

l An interpreter is made up of a syntactic and a semantic
analysis block.

l An interpreter reads, decodes, and executes code.
l For interpreters the semantic analysis block is slightly

modified – it analyzes and executes the IR producing the
program output.

l Examples include simple programmable calculators as well
as languages such as Ruby and Python.

Syntax
Analysis

Program
Text

IR

Semantic
Analysis

Program
Output

The Translator/Compiler

l A translator consists of all three of our building blocks.
l A translator reads text in one language and emits output

conforming to another language.
l We often fit an additional optimization phase between the

semantic analysis and the code generation phases.
l Examples include log file generators, assemblers and of

course compilers.
l Note: A compiler is a translator that translates a high-level

language to a low-level language.

Syntax
Analysis

Program
Text

IR
Semantic
Analysis

IR
Code

Generation
Target

Language

The Simple Translator

l A simple translator consists of a syntax analysis block
and a code generation block

l It does not perform any semantic analysis
l Think of it as the Reader followed by the Generator.
l Examples include pretty printers and other formatters.

Syntax
Analysis

Program
Text

IR
Code

Generation
Target

Language

Example: Processing the Java
Language
l A processing pipeline for a language can

consist of multiple language processors.
l The language processing pipeline for Java

consists mainly of
l A compiler from Java to bytecode
l A bytecode interpreter

Example: Processing the Java
Language

class Funny {

public int i = 0;

public Funny(int x) {
i = x;

}

public static void main(String[] args) {
Funny a[] = new Funny[10];

for (int j = 0; j < 10; j++) {
a[j] = new Funny(j);

}
}

}

class Funny extends java.lang.Object{
public int i;
public Funny(int);
Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: aload_0
5: iconst_0
6: putfield #2; //Field i:I
9: aload_0
10: iload_1
11: putfield #2; //Field i:I
14: return

public static void main(java.lang.String[]);
Code:
0: bipush 10
2: anewarray #3; //class Funny
5: astore_1
6: iconst_0
7: istore_2
8: iload_2
9: bipush 10
11: if_icmpge 31
14: aload_1
15: iload_2
16: new #3; //class Funny
19: dup
20: iload_2
21: invokespecial #4; //Method "<init>":(I)V
24: aastore
25: iinc 2, 1
28: goto 8
31: return

}

Java:
Bytecode:

compile

interpret

Program
Output

Note: javap -c <classname> will show bytecode.

Example: Processing the Java
Language - Compiler

Syntax
Analysis

Java
Code

IR
Semantic
Analysis

IR
Code

Generation Bytecode

Example: Processing the Java
Language – Bytecode Interpreter

Syntax
Analysis

Bytecode
File

(Class File)

IR

Semantic
Analysis

Program
Output

Assignments & Readings
l Read Chapter 1
l Assignment #0:

l Download & Read Syllabus
l upload a copy into BrightSpace

