

University of Rhode Island

Department of Computer Science and Statistics

CSC402, Programming Language Implementation, Fall 2024

Instructor: Lutz Hamel

Office Location: Tyler Hall 251

Email: lutzhamel@uri.edu

Class Days/Time: MWF 11-11:50am

Classroom: Engineering Building Room 040

Prerequisites: CSC301

Webpage: https://lutzhamel.github.io/CSC402 or BrightSpace

Course Description

● Have you ever wondered how the syntax highlighter in Eclipse works?
● Have you ever wondered how your favorite programming language is

implemented?
● How about Python and JavaScript?
● What is the difference between interpreting a programming language and

translating/compiling it?
● What is the difference between an interpreter and a virtual machine?

If any of these questions interest you, then CSC402 is for you. We will spend the
semester looking at programming language implementations: from syntax highlighters
to code analyzers, from interpreters and virtual machines to compilers.

As part of the course we will construct interpreters and translators for domain specific
languages such as calculator languages and command line languages for steering your
favorite game character. The course will also include one large semester project of a

https://lutzhamel.github.io/CSC402

language implementation project of your choosing. This could be a graphics language, a
new programming language (think Ruby), a domain specific language such as PHP or a
new command line shell interpreter for Unix/DOS.

Course Goals
The goal of the course is to give you a solid foundation with respect to programming
language implementation that includes:

• grammar construction
• parsing techniques
• intermediate representations
• abstract syntax tree construction
• tree pattern matching techniques

We will study a number of different programming language implementation techniques
including,

• compilers
• interpreters, and
• virtual machines.

These tools will enable you to add domain specific and general programming language
implementations to your tool chest to solve difficult engineering problems.

Upon successful completion of this course, each student will be able to:

• Understand the difference between compilers and interpreters.
• Use grammar specification tools effectively.
• Design and implement domain specific and general purpose programming

languages.

Required Texts/Readings
Textbook
Programming Language Implementation: A Practical Introduction with Python. Lutz
Hamel, Franklin & Beedle, 2024.

Exams, Assignments, and Grading Policy

Course Grade Composition:

Assignments, Quizzes 50%
Midterm 25%
Final 25%

Grading Key

Homework consists of exercises to familiarize you with common tools and concepts in
programming language implementation. Programming assignments are typically
projects that can be completed within a couple of days. The midterm and the final
comprise major projects and you should budget your time accordingly. Assignments
are given on a weekly basis.

Classroom Protocol
● Check the website (often)! I will try to keep the website as up-to-date as possible.
● Promptness, participation, and adequate preparation for each class are expected. If

you are absent, it is your responsibility to find out what you missed (e.g. handouts,
announcements, assignments, new material, etc.)

● Late assignments/project will not be accepted without a valid excuse, such as illness
etc. If you find that you are unable to submit an assignment/project please get in touch
with me as soon as possible before the deadline expires.

● All work is to be the result of your own individual efforts unless explicitly stated
otherwise. This includes code/work generated via AI. If you submit code/work
generated via AI as your own, you will face plagiarism charges. Plagiarism,
unauthorized cooperation or any form of cheating will be handled according to the
University Manual section 8.27.10 through 8.27.21 (see www.uri.edu/facsen/8.20-
8.27.html). The penalty for cheating or plagiarism can range from a zero score on the
assignment to a failing grade for the course.

● Software piracy will be dealt with exactly like stealing of university or departmental
property. Any abuse of computer or software equipment will subject to disciplinary
action.

● Any student with a documented disability should contact me early in the semester so that
we can make reasonable accommodations to support your success in this course. You
should also contact Disability Services for Students, Office of Student Life, 330
Memorial Union, 874-2098

Anti-Bias Statement: We respect the rights and dignity of each individual and group. We
reject prejudice and intolerance, and we work to understand differences. We believe that

equity and inclusion are critical components for campus community members to thrive. If
you are a target or a witness of a bias incident, you are encouraged to submit a report to
the URI Bias Response Team at www.uri.edu/brt. There you will also find people and
resources to help.
Academic Enhancement Center: Located in Roosevelt Hall, the AEC offers free face-to-
face and web-based services to undergraduate students seeking academic support. Peer
tutoring is available for STEM- related courses by appointment online and in-person. The
Writing Center offers peer tutoring focused on supporting undergraduate writers at any
stage of a writing assignment. The UCS160 course and academic skills consultations
offer students strategies and activities aimed at improving their studying and test-taking
skills. Complete details about each of these programs, up-to-date schedules, contact
information and self-service study resources are all available on the AEC website,
uri.edu/aec.

Tentative Course Schedule

1. Programming Languages and their Processors
2. Parsing and Lexing
3. Syntax-Directed Processing
4. Interpretation with Intermediate Representations
5. Tree Based Intermediate Representations
6. A Basic Compiler
7. Symbol Tables and Scope
8. Functions
9. Type Systems
10. Structured Data Types
11. Parser Generators

