# Programming for Data Science

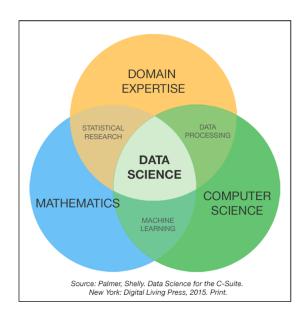


# **Course Details**

- Dr Lutz Hamel
- Best way to get in touch email:
  - o lutzhamel@uri.edu
- Everything is online
  - Assignments & Gradebook & Syllabus
    - BrightSpace
  - Lecture Notes
    - https://lutzhamel.github.io/CSC310/
  - Book
    - Python Data Science Handbook

#### O'REILLY

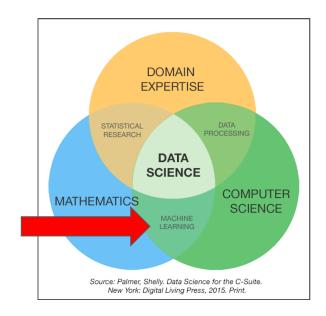





Jake VanderPlas

**■** Data science is the discipline of the extraction of knowledge from data.

#### It relies on


- computer science
  - for AI, data structures, algorithms, visualization, big data support, and general programming
- statistics/mathematics
  - for data models and inference
- domain expertise
  - for asking questions and interpreting results



**■** Data science is the discipline of the extraction of knowledge from data.

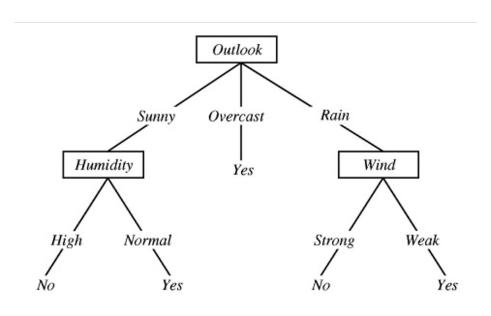
How do we do that?

**☞** We build MODELS of data!



# Models: Play Tennis

| Day | Outlook  | Temperature           | Humidity | Wind   | PlayTennis |
|-----|----------|-----------------------|----------|--------|------------|
| D1  | Sunny    | Hot                   | High     | Weak   | No         |
| D2  | Sunny    | Hot                   | High     | Strong | No         |
| D3  | Overcast | $\mathbf{Hot}$        | High     | Weak   | Yes        |
| D4  | Rain     | $\operatorname{Mild}$ | High     | Weak   | Yes        |
| D5  | Rain     | Cool                  | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool                  | Normal   | Strong | No         |
| D7  | Overcast | Cool                  | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild                  | High     | Weak   | No         |
| D9  | Sunny    | Cool                  | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild                  | Normal   | Weak   | Yes        |
| D11 | Sunny    | $\operatorname{Mild}$ | Normal   | Strong | Yes        |
| D12 | Overcast | $\operatorname{Mild}$ | High     | Strong | Yes        |
| D13 | Overcast | Hot                   | Normal   | Weak   | Yes        |
| D14 | Rain     | $\operatorname{Mild}$ | High     | Strong | No         |

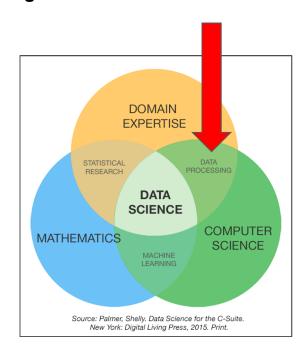

Lots of data - very little information!

Build a model - a decision tree!

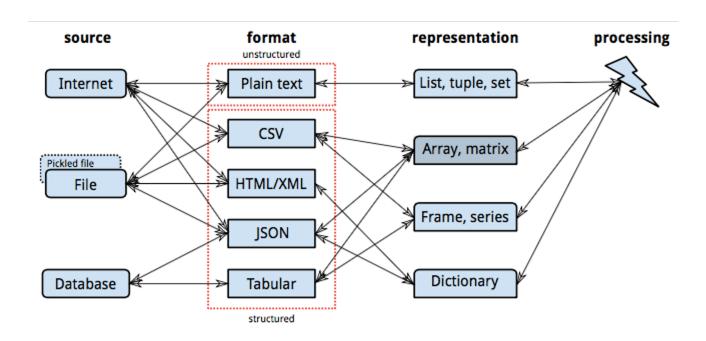
# Models: Play Tennis

| Day | Outlook  | Temperature           | Humidity | Wind   | PlayTennis |
|-----|----------|-----------------------|----------|--------|------------|
| D1  | Sunny    | Hot                   | High     | Weak   | No         |
| D2  | Sunny    | Hot                   | High     | Strong | No         |
| D3  | Overcast | Hot                   | High     | Weak   | Yes        |
| D4  | Rain     | Mild                  | High     | Weak   | Yes        |
| D5  | Rain     | Cool                  | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool                  | Normal   | Strong | No         |
| D7  | Overcast | Cool                  | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild                  | High     | Weak   | No         |
| D9  | Sunny    | Cool                  | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild                  | Normal   | Weak   | Yes        |
| D11 | Sunny    | $\operatorname{Mild}$ | Normal   | Strong | Yes        |
| D12 | Overcast | $\operatorname{Mild}$ | High     | Strong | Yes        |
| D13 | Overcast | Hot                   | Normal   | Weak   | Yes        |
| D14 | Rain     | $\operatorname{Mild}$ | High     | Strong | No         |

#### **ID3 Decision Tree**




This model summarizes the whole table correctly!

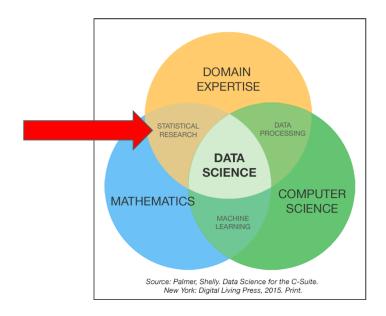

**■** Data science is the discipline of the extraction of knowledge from data.

Where does the data come from?

**☞** The data pipeline!



# The Data Pipeline




**■** Data science is the discipline of the extraction of knowledge from data.

How do we preprocess our data for model building?

#### **☞** Statistics!

- Descriptive Statistics
- Missing Value Processing
- Normalization

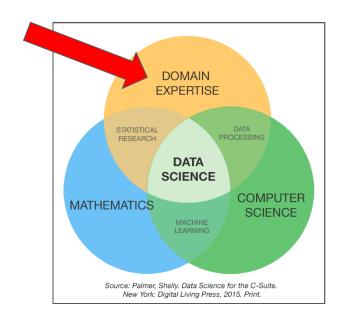


# Descriptive vs. Inferential Statistics

**Purpose**: Descriptive statistics aim to summarize data, while inferential statistics aim to make predictions or generalizations about a population from a sample.

**Data coverage**: Descriptive statistics deal with the entire dataset, whereas inferential statistics focus on samples from which to generalize about a population.

**Analysis outcome**: The outcome of descriptive statistics is a summary of data, while the outcome of inferential statistics is predictions, decisions, or inferences about population parameters.


**In summary**, descriptive statistics help describe, show, or summarize data in a meaningful way, allowing the data to be visualized easily, whereas inferential statistics take data from a sample and make inferences or predictions about a population.

**■** Data science is the discipline of the extraction of knowledge from data.

How do we ask the right questions?

#### **☞** Domain Expertise!

Knowledge cannot be generated in a vacuum. You need the context of a domain in order to generate new insights. E.g. bioinformatics, climate modeling, sales forecasting, *etc.* 

