Artificial Neural Networks (ANNS)

Biologically inspired computational model:

(1) Simple computational units (neurons).
(2) Highly interconnected - connectionist view
(3) Vast parallel computation, consider:
*  Human brain has ~10! neurons
«  Slow computational units, switching time ~10-3 sec
(compared to the computer >10-10 sec)
*  Yet, you can recognize a face in ~10-1 sec
«  This implies only about 100 sequential, computational
neuron steps - this seems too low for something as
complicated as recognizing a face
e Parallel processing

ANNSs are naturally parallel - each neuron is a self-contained
computational unit that depends only on its inputs.



Learning

We have seen machine learning with different representations:

(1) Decision trees -- symbolic representation of various decision
rules -- “disjunction of conjunctions”

(2) Perceptron -- learning of weights that represent alinear decision
surface classifying a set of objects into two groups
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Different representations give rise to different hypothesis or model spaces.

Machine learning algorithms search these model spaces for the best fitting
model.




The Perceptron

. A simple, single layered neural
“network” - only has a single neuron.

- However, even this simple neural
network Is already powerful enough to
perform (linear) classification tasks.




The Architecture
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Computation

A perceptron computes the value,

m
y=sgn b+ Zw,.xi
i=1
Ignoring the activation function sgn and setting m = 1, we obtain,

y'=b+wyx,

But this is the equation of a line with slope w and offset b.

Observation: For the general case the perceptron computes a hyperplane in order
to accomplish its classification task,

m
y'=b+ Ewi.x!. =b+weXx



Perceptron Learning Revisited

0606 Cuartz (B) - Active
Perceptron Learning
g
Initialize % and b to random values. [
repeat h
for each (T;,y;) € D do [ e Vg, 1
if f(F:) # y: then NN
Update % and b incrementally. N N
end if
end for
until D is perfectly classified. 2
return 0 and b
g
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Constructs a line (hyperplane) as a classifier

h+wex




Classification
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In order for the hyperplane to become a classifier we need to find b and w => learning!



What About Non-Linearity?
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Can we learn this decision surface? ...Yes! Multi-Layer Perceptrons



Multi-Layer Perceptrons (ANNS)
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How do we train?

Perceptron was easy:

Initialize 7 and b to random values. error
repeat —
for each (T;, y; >do
if f(T:) # y: then
Update w and b incrementally.
end if
end for
until D is perfectly classified.
return  and b

Every time we found an error of the predicted value f(x;) compared
to the label in the training set y;, we update w and b.

Not so easy in multi-layer neural networks — the error can occur
deep in the network!



Artificial Neural Networks

Feed-forward with Backpropagation

Input Hidden Output

We have to be a Layer Layer Layer

bit smarter in the

case of ANNSs:

compute the signal
(feed forward) and

then use the error at the
output to update all the
weights by propagating
the error back through
the network.
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a = learning rate

Backpropagation
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Note: These computations only work if the transfer functions are differentiable.



Neural Network Learning

Define the network error in

terms of weights w as 25,
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Use the gradient (slope) of the
error surface to guide the
search towards appropriate
weights:
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= Backpropagation can be understood as a stochastic gradient
search on the error surface of the network.




Backpropagation Algorithm

Note: this algorithm is for
a NN with a single output
node o and a single hidden
layer. It can easily

be generalized.

Initialize the weights in the network (often randomly)
Do

For each example e in the training set
// forward pass
y = compute neural net output
y’ = label for e from training data
Calculate error E = (y’ - y)? at the output units
I/ backward pass
Compute error 8, for weights from a hidden node h to the output node o using E
Compute error o, for weights from an input node i to hidden node h using o,
Update the weights in the network

Until all examples classified correctly or stopping criterion satisfied
Return the network

Source: http://en.wikipedia.org/wiki/Backpropagation




Representational Power

- Every bounded continuous function can be approximated
with arbitrarily small error by a network with one hidden
layer.

- Any function can be approximated to arbitrary accuracy by
a network with two hidden layers.
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Target Function:

Hidden Layer Representations

Input Qutput
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?




Hidden Layer Representations

Inputs Outputs Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000 égg
00100000 — .01 .97 .27 — 00100000 010
00010000 — .99 .97 .71 — 00010000 111
00001000 — .03 .05 .02 — 00001000 000
00000100 — .22 .99 .99 — 00000100 géi
00000010 — .80 .01 .98 — 00000010 110
00000001 — .60 .94 .01 — 00000001

== This neural network architecture is sometimes also called
autoencoder because of its ability to invent new representations of the
Input data and is a popular building block in deep-learning.
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