
Artificial Neural Networks (ANNs)

Biologically inspired computational model:

(1) Simple computational units (neurons).

(2) Highly interconnected - connectionist view

(3) Vast parallel computation, consider:
• Human brain has ~1011 neurons

• Slow computational units, switching time ~10-3 sec

(compared to the computer >10-10 sec)

• Yet, you can recognize a face in ~10-1 sec

• This implies only about 100 sequential, computational
neuron steps - this seems too low for something as

complicated as recognizing a face

• Parallel processing

ANNs are naturally parallel - each neuron is a self-contained 
computational unit that depends only on its inputs.



Learning

We have seen machine learning with different representations:

(1) Decision trees -- symbolic representation of various decision 

rules -- “disjunction of conjunctions”

(2) Perceptron -- learning of weights that represent alinear decision 

surface classifying a set of objects into two groups

Different representations give rise to different hypothesis or model spaces.

Machine learning algorithms search these model spaces for the best fitting

model.



The Perceptron

• A simple, single layered neural 

“network” - only has a single neuron.

• However, even this simple neural 

network is already powerful enough to 

perform (linear) classification tasks.



The Architecture

Computational Unit

Multiplication Sum Transfer Function

Inputs

Bias

Output

Weights

Transfer Function:

Note: 

Binary Classification

Perceptron Computation:



Computation

Ignoring the activation function sgn and setting m = 1, we obtain,

A perceptron computes the value,

But this is the equation of a line with slope w and offset b.

Observation: For the general case the perceptron computes a hyperplane in order

to accomplish its classification task,



Perceptron Learning Revisited

Constructs a line (hyperplane) as a classifier



Classification

x1

x2

In order for the hyperplane to become a classifier we need to find b and w => learning!

= +1

= -1



What About Non-Linearity?

x1

x2

= +1

= -1

Decision 

Surface

Can we learn this decision surface? …Yes! Multi-Layer Perceptrons



Multi-Layer Perceptrons (ANNs)

…

x0

x1

x2

Xn-1

xn

y

Input

Layer

Hidden

Layer

Output

Layer

Combination 

Function

Transfer

Function

≡
≡ Linear/Input

Unit

Notice the smooth

Transfer function!



How do we train?

Perceptron was easy:

error

Every time we found an error of the predicted value f(x i) compared

to the label in the training set yi, we update w and b.

Not so easy in multi-layer neural networks – the error can occur 

deep in the network!



Artificial Neural Networks

Feed-forward with Backpropagation

Signal Feed-forward

Error 

Backpropagation

…

x0

x1

x2

Xn-1

xn

y

Input

Layer

Hidden

Layer

Output

LayerWe have to be a

bit smarter in the
case of ANNs: 
compute the signal

(feed forward) and
then use the error at the 

output to update all the 
weights by propagating 
the error back through 

the network.



Backpropagation

…

x0

x1

x2

Xn-1

xn

y

Input

Layer

Hidden

Layer

Output

Layer

who

δo

δh
wihi

h

o

𝐸 = (𝑦′ − 𝑦)2

𝛿0 =
𝜕𝐸

𝜕𝑤

𝑤ℎ𝑜 ← 𝑤ℎ𝑜+ α𝛿𝑜

𝑤𝑖ℎ ← 𝑤𝑖ℎ+ α𝛿ℎ

(output error)

(error at output node)

(weight update)

(error at hidden node)

(weight update)

E

Eh

𝛼 = learning rate

𝛿ℎ =
𝜕𝐸ℎ
𝜕𝑤

=
𝜕𝑤ℎ𝑜

𝜕𝑤
𝛿𝑜

Note: These computations only work if the transfer functions are differentiable.



• Define the network error in 

terms of weights w as

for some training instance x.

• Use the gradient (slope) of the 

error surface to guide the 

search towards appropriate 

weights:

Neural Network Learning

E
x(

w
)

w0

w1

𝐸 = (𝑦′ − 𝑦)2

☞ Backpropagation can be understood as a stochastic gradient 

search on the error surface of the network.

∆𝑤 = −
𝜕𝐸

𝜕𝑤



Backpropagation Algorithm

Initialize the weights in the network (often randomly)

Do
For each example e in the training set

// forward pass

y = compute neural net output
y’ = label for e from training data

Calculate error E = (y’ - y)2 at the output units
// backward pass
Compute error δo for weights from a hidden node h to the output node o using E 

Compute error δh for weights from an input node i to hidden node h using δo

Update the weights in the network

Until all examples classified correctly or stopping criterion satisfied
Return the network

Source: http://en.wikipedia.org/wiki/Backpropagation

Note: this algorithm is for 

a NN with a single output 

node o and a single hidden

layer. It can easily 

be generalized.



Representational Power

• Every bounded continuous function can be approximated 
with arbitrarily small error by a network with one hidden 
layer.

• Any function can be approximated to arbitrary accuracy by 
a network with two hidden layers.



Hidden Layer Representations

Target Function:

Can this be learned?



Hidden Layer Representations

1 0 0

0 0 1

0 1 0

1 1 1

0 0 0

0 1 1

1 0 1

1 1 0

☞ This neural network architecture is sometimes also called

autoencoder because of its ability to invent new representations of the

input data and is a popular building block in deep-learning.


	Slide 1: Artificial Neural Networks (ANNs)
	Slide 2: Learning
	Slide 3: The Perceptron
	Slide 4: The Architecture
	Slide 5: Computation
	Slide 6: Perceptron Learning Revisited
	Slide 7: Classification
	Slide 8: What About Non-Linearity?
	Slide 9: Multi-Layer Perceptrons (ANNs)
	Slide 10: How do we train?
	Slide 11: Artificial Neural Networks
	Slide 12: Backpropagation
	Slide 13: Neural Network Learning
	Slide 14: Backpropagation Algorithm
	Slide 15: Representational Power
	Slide 16: Hidden Layer Representations
	Slide 17: Hidden Layer Representations

