
Artificial Neural Networks (ANNs)
Biologically inspired computational model:

(1) Simple computational units (neurons).
(2) Highly interconnected - connectionist view
(3) Vast parallel computation, consider:

• Human brain has ~1011 neurons
• Slow computational units, switching time ~10-3 sec

(compared to the computer >10-10 sec)
• Yet, you can recognize a face in ~10-1 sec
• This implies only about 100 sequential, computational

neuron steps - this seems too low for something as
complicated as recognizing a face

• Parallel processing

ANNs are naturally parallel - each neuron is a self-contained
computational unit that depends only on its inputs.

Learning
We have seen machine learning with different representations:
(1) Decision trees -- symbolic representation of various decision

rules -- “disjunction of conjunctions”
(2) Perceptron -- learning of weights that represent alinear decision

surface classifying a set of objects into two groups

Different representations give rise to different hypothesis or model spaces.
Machine learning algorithms search these model spaces for the best fitting
model.

The Perceptron

• A simple, single layered neural
“network” - only has a single neuron.

• However, even this simple neural
network is already powerful enough to
perform (linear) classification tasks.

The Architecture

Computational Unit

Multiplication Sum Transfer Function

Inputs

Bias

Output

Weights

Transfer Function:

Note:

Binary Classification

Perceptron Computation:

Computation

Ignoring the activation function sgn and setting m = 1, we obtain,

A perceptron computes the value,

But this is the equation of a line with slope w and offset b.

Observation: For the general case the perceptron computes a hyperplane in order
to accomplish its classification task,

Perceptron Learning Revisited

Constructs a line (hyperplane) as a classifier

Classification

x1

x2

In order for the hyperplane to become a classifier we need to find b and w => learning!

= +1

= -1

What About Non-Linearity?

x1

x2

= +1

= -1

Decision
Surface

Can we learn this decision surface? …Yes! Multi-Layer Perceptrons

Multi-Layer Perceptrons (ANNs)

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
Layer

Combination
Function

Transfer
Function

≡≡ Linear/Input
Unit

Notice the smooth
Transfer function!

How do we train?

Perceptron was easy:

error

Every time we found an error of the predicted value f(xi) compared
to the label in the training set yi, we update w and b.

Not so easy in multi-layer neural networks – the error can occur
deep in the network!

Artificial Neural Networks
Feed-forward with Backpropagation

Signal Feed-forward

Error
Backpropagation

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
LayerWe have to be a

bit smarter in the
case of ANNs:
compute the signal
(feed forward) and
then use the error at the
output to update all the
weights by propagating
the error back through
the network.

Back Propagation Training

Backpropagation

This only works because

and the output y is differentiable because the transfer function is differentiable. Also note,
everything is based on the rate of change of the error…we are searching in the direction where
the rate of change will minimize the output error.

…

x0

x1

x2

Xn-1

xn

y

Input
Layer

Hidden
Layer

Output
Layer

who δo

δhwihi
h

o
𝐴 = 𝜋𝑟!

𝐸 = (𝑦" − 𝑦)!

𝛿# = 𝑦 1 − 𝑦 𝐸

𝑤$% ← 𝑤$%+ α𝛿%

𝛿$ = 𝑦 1 − 𝑦 𝑤$%𝛿%

𝑤&$ ← 𝑤&$+ α𝛿$

(output error)

(output node error)

(weight update)

(hidden node error)

(weight update)

𝛿! = 𝑦 1 − 𝑦 𝐸 = "#
"𝒘%𝒙

= "((!)()"

"𝒘%𝒙
= 2(y+ − y) "(+

"𝒘%𝒙
− "(

"𝒘%𝒙

For this to work transfer
Function has to be smooth!!

Backpropagation Algorithm
Initialize the weights in the network (often randomly)
Do

For each example e in the training set
// forward pass
y = compute neural net output
y’ = label for e from training data
Calculate error E = (y’ - y)2 at the output units
// backward pass
Compute error δo for weights from a hidden node h to the output node o using E
Compute error δh for weights from an input node i to hidden node h using δo
Update the weights in the network

Until all examples classified correctly or stopping criterion satisfied
Return the network

Source: http://en.wikipedia.org/wiki/Backpropagation

Note: this algorithm is for
a NN with a single output
node o and a single hidden
layer. It can easily
be generalized.

• Define the network error in
terms of weights w as

for some training instance x.
• Use the gradient (slope) of the

error surface to guide the
search towards appropriate
weights:

Neural Network Learning

k

x
k w

Ew
∂
∂

−=Δ η
E x
(w
)

w0

w1

𝐸!(𝑤) = (𝑦" − 𝑦)#

☞ Backpropagation can be understood as a stochastic gradient
search on the error surface of the network.

Representational Power
• Every bounded continuous function can be approximated

with arbitrarily small error by a network with one hidden
layer.

• Any function can be approximated to arbitrary accuracy by
a network with two hidden layers.

Hidden Layer Representations
Target Function:

Can this be learned?

Hidden Layer Representations

1 0 0
0 0 1
0 1 0
1 1 1
0 0 0
0 1 1
1 0 1
1 1 0

☞ This neural network architecture is sometimes also called
autoencoder because of its ability to invent new representations of the
input data and is a popular building block in deep-learning.

