Defining Language TWO

- Extend Language ONE with:
 - Variables
 - `let` expression for assigning values to them
Reading

- Section 23.3
A sample Language TWO expression:

```twin
let val y = 3 in y*y end
```

What does the parse tree for the above expression look like?

Notice that in TWO assignments are expressions and the variables bindings are only valid in the scope of the second expression of the let expression.
Additional abstract syntax nodes for language TWO:

(1) \(\text{var}(X) \) dereferences a variable \(X \)

(2) \(\text{let}(X,E1,E2) \) binds the variable \(X \) to expression \(E1 \) in the context of expression \(E2 \).

Example: the TWO program

\[
\text{let val } y = 3 \text{ in } y^*y \text{ end}
\]

will result in the AST

\[
\text{let}(y, \text{const}(3), \text{times}(\text{var}(y), \text{var}(y)))
\]
From Parse Tree to Prolog AST

Consider: 2 * let x = 5 in 1+x end
- Parse tree?
- AST?
- Prolog AST?
In order to provide semantics we need to remember the values assigned to variables -- binding environments (fancy word for dictionary!)

In our case, for the Prolog based semantics, we let the terms bind(X,K) represent the binding of variable X to value K. A context is simply a list of these binding terms:

\[[\text{bind}(y,3),\text{bind}(q,20),\text{bind}(z,5)]\]

Given this binding structure, we can write a predicate, lookup/3, that returns a variable binding for a particular Var

\[
\text{lookup}(\text{Var},[\text{bind}(\text{Var},\text{Value})|__],\text{Value}). \\
\text{lookup}(\text{Var},[__|\text{Rest}],\text{Value}) :- \text{lookup}(\text{Var},\text{Rest},\text{Value}).
\]

Finds the most recent binding of variable \text{Var} if there is one.
val2(plus(X,Y),B,Value) :-
 val2(X,B,XValue),
 val2(Y,B,YValue),
 Value is XValue + YValue.

val2(times(X,Y),B,Value) :-
 val2(X,B,XValue),
 val2(Y,B,YValue),
 Value is XValue * YValue.

val2(const(X),_,X).

val2(var(X),B,Value) :-
 lookup(X,B,Value).

val2(let(X,Exp1,Exp2),B,Value) :-
 val2(Exp1,B,XValue),
 val2(Exp2,[bind(X,XValue) | B],Value).

val2 / 3 - interpretation predicate
first argument: AST
second argument: binding env;
third argument: semantic value.
Examples

```
let val y = 3 in y*y end

?- val2(let(y, const(3), times(var(y), var(y))), [], X).
X = 9
Yes
```

```
let val y = 3 in
  let val x = y*y in
    x*x
  end
end

let val y = 1 in
  let val y = 2 in
    y
  end
end
```
Exercises

- Use the semantics of TWO to show the following:
 - Assume that the context \(B = \text{[bind}(y,3)] \) then the semantic value of \('2*y' \) is 6
 - The semantic value of \('2 * \text{let} \ x = 3 \ \text{in} \ x * x \ \text{end}' \) is 18
 - The semantic value of \('\text{let} \ x = 1 \ \text{in} \ \text{let} \ y = x + 1 \ \text{in} \ y \ \text{end} \ \text{end}' \) is 2
Exercises

Use the semantics to compute the meaning of the following expressions in TWO (use the rules given in the notes, the book has many typos):

1) let val y = 3 in 2*y end

2) let val y = 1 in
 let val y = 2 in
 y
 end
end

Note: first construct an abstract syntax tree, then give the representation in Prolog notation, and then show the computation in our semantics.