Defining Language TWO

- Extend Language ONE with:
- Variables
- let expression for assigning values to them

Reading

- Section 23.3

TWO: Syntax

TWO:

$$
\begin{aligned}
& \text { <exp>* ::= <exp> + <mulexp> | <mulexp> } \\
& \text { <mulexp> ::= <mulexp> * <rootexp> | <rootexp> } \\
& \text { <rootexp> : := let val <variable> = <exp> in <exp> end } \\
& \text { | (<exp>) | <variable> | <constant> }
\end{aligned}
$$

- A sample Language TWO expression:
let val $y=3$ in $y * y$ end
- What does the parse tree for the above expression look like?
- Notice that in TWO assignments are expressions and the variables bindings are only valid in the scope of the second expression of the let expression.

TWO: Abstract Syntax

Additional abstract syntax nodes for language TWO:
(1) $\operatorname{var}(X)$ dereferences a variable X
(2) let(X,E1,E2) binds the variable X to expression $E 1$ in the context of expression E2.

Example: the TWO program

$$
\text { let val } y=3 \text { in } y^{*} y \text { end }
$$

will result in the AST

$$
\text { let }(y, \operatorname{const}(3), \text { times }(\operatorname{var}(y), \operatorname{var}(y)))
$$

From Parse Tree to Prolog AST

- Consider: 2 * let $x=5$ in $1+x$ end
- Parse tree?
- AST?
- Prolog AST?

TWO: Semantics

In order to provide semantics we need to remember the values assigned to variables -- binding environments (fancy word for dictionary!)

In our case, for the Prolog based semantics, we let the terms bind(X, K) represent the binding of variable X to value K. A context is simply a list of these binding terms:

$$
[b i n d(y, 3), \text { bind }(q, 20), \text { bind }(z, 5)]
$$

Given this binding structure, we can write a predicate, lookup/3, that returns a variable binding for a particular Var

```
lookup(Var, [bind(Var,Value)| _ ],Value).
lookup(Var,[ _ |Rest],Value) :- lookup(Var,Rest,Value).
```

Finds the most recent binding of variable Var if there is one.

TWO: Prolog Interpreter

```
val2(plus(X,Y) ,B,Value) :-
    val2(X,B,XValue),
    val2(Y,B,YValue),
    Value is XValue + YValue.
val2(times(X,Y) ,B,Value) :-
    val2(X,B,XValue),
    val2(Y,B,YValue),
    Value is XValue * YValue.
val2(const(X),_,X).
val2(var(X),B,Value) :-
    lookup (X,B,Value).
val2(let(X,Exp1,Exp2),B,Value) :-
    val2 (Exp1,B,XValue),
    val2 (Exp2,[bind(X,XValue)|B],Value).
```


Examples

let val $y=3$ in $y^{*} y$ end
?- val2 (let $(y, \operatorname{const}(3)$, times $(\operatorname{var}(y), \operatorname{var}(y))),[1, X)$.
$X=9$

Yes
let val $y=3$ in
let val $x=y^{*} y$ in $\mathbf{x}^{*} \mathbf{x}$
end
end

$$
\begin{aligned}
& \text { let val } y=1 \text { in } \\
& \text { let val } y=2 \text { in } \\
& y \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Exercises

- Use the semantics of TWO to show the following:
- Assume that the context $\mathrm{B}=[\operatorname{bind}(\mathrm{y}, 3)]$ then the semantic value of ' $2 * y$ ' is 6
- The semantic value of ' 2 * let $x=3$ in x * x end' is 18
- The semantic value of
'let $x=1$ in let $y=x+1$ in y end end' is 2

Exercises

- Use the semantics to compute the meaning of the following expressions in TWO (use the rules given in the notes, the book has many typos):

1) let val $y=3$ in $2 * y$ end
2) let val $y=1$ in
let val $y=2$ in

y

end
end

Note: first construct an abstract syntax tree, then give the representation in Prolog notation, and then show the computation in our semantics.

