Formal Semantics

The structure of a language defines its syntax, but what defines semantics or meaning?
\Rightarrow Behavior!
The most straight forward way to define semantics is to provide a simple interpreter for the programming language that highlights the behavior of the language,
\Rightarrow Operational Semantics

Reading

- Sections 23.1 \& 23.2 in MPL

Operational Semantics

Let's develop an operational semantics for a simple programming language called ONE;

$$
\begin{aligned}
\text { ONE }: \quad & <\exp >\star::=<\exp >+<\text { mulexp }>\mid<\text { mulexp }> \\
& <\text { mulexp }>::=<\text { mulexp }>\star<\text { rootexp }>\mid<\text { rootexp }> \\
& <\text { rootexp }>::=(<\exp >) \mid<\text { constant }> \\
& <\text { constant }>::=\text { all valid integer constants }
\end{aligned}
$$

Note: The grammar is unambiguous, both precedence and associativity rules of "standard" arithmetic are observed.

Do the following sentences belong to $L(O N E)$? Why? Why not?

$$
\begin{aligned}
& s=1+2 * 3 \\
& s=(1+2) * 3 \\
& s=a+3
\end{aligned}
$$

Abstract Syntax Trees

We want to define an operational semantics, i.e., an abstract interpreter for the language, but parse trees are not very convenient, too many non-terminal symbols \Rightarrow Abstract Syntax Tree (AST)

Transformation Rules:

Note: This rule also applies to unary operators and operators with arity > 2.

Observations

Observation: The abstract syntax tree is a simplified form of the parse tree: same order as the parse tree, but no non-terminals.

ASTs \& Parentheses

- What happens to parentheses in the AST representation of a program?
- They are not needed!
- ASTs naturally represent associativity and precedence relations.
- Consider: (1 + 2) * 3
- Parentheses do not contribute to computations, therefore the following tree transformations can be applied:

Prolog ASTs

We can represent ASTs in Prolog:

plus(const(1),times(const(2),const(3)))

ONE: Prolog Interpreter

A simple interpreter that computes a semantic value for syntactic constructs, the computation of this semantic value can be interpreted as the behavior: myeval / 2, AST input and semantic value as output.

```
myeval(plus (X,Y) ,Value) :-
    myeval (X,XValue),
    myeval(Y,YValue),
    Value is XValue + YValue.
myeval(times(X,Y),Value) :-
    myeval (X,XValue),
    myeval(Y,YValue),
    Value is XValue * YValue.
myeval(const(X),Value) :- Value = X.
```

```
?- myeval(const(1),x).
```

?- myeval(const(1),x).
x = 1
x = 1
Yes
Yes
?- myeval(plus(const(1),const(2)),X).
?- myeval(plus(const(1),const(2)),X).
x = 3
x = 3
Yes
Yes
?- myeval(plus(const(1),times(const(2),const(3))),X).
?- myeval(plus(const(1),times(const(2),const(3))),X).
x = 7
x = 7
Yes

```
Yes
```


Semantics of Expressions

- With our semantics (interpreter) in place we can now compute the semantic value of any expression program, e.g.
$1+2 * 3$

Exercises

- Extend the grammar for language ONE with the subtraction operator
- Extend the operational semantics appropriately, e.g.,
- $6-3$ should give the value 3

Assume that the abstract syntax of this operator is $\operatorname{sub}(x, y)$.

- Compute the semantic value for the following expressions:
- sub $(3,1)$
- $\operatorname{sub}(4,2)$

Exercises

- Extend the grammar for language ONE with the '!' factorial operator
- Extend the operational semantics appropriately, e.g.,
- 3 ! should give the value 6

Assume that the abstract syntax of this operator is fact(x).

- Compute the semantic value for the following expressions:
- fact(3)
- fact(4)

