Formal Semantics

The structure of a language defines its syntax, but what defines semantics or meaning?

⇒ Behavior!

The most straightforward way to define semantics is to provide a simple interpreter for the programming language that highlights the behavior of the language,

⇒ Operational Semantics
Operational Semantics

Let’s develop an operational semantics for a simple programming language called ONE;

\[
\begin{align*}
\text{ONE:} & \quad <\text{exp}> & ::= & \quad <\text{exp}> + <\text{mulexp}> \mid <\text{mulexp}> \\
& \quad <\text{mulexp}> & ::= & \quad <\text{mulexp}> \ast <\text{rootexp}> \mid <\text{rootexp}> \\
& \quad <\text{rootexp}> & ::= & \quad (<\text{exp}>) \mid <\text{constant}> \\
& \quad <\text{constant}> & ::= & \quad \text{all valid integer constants}
\end{align*}
\]

Note: The grammar is unambiguous, both precedence and associativity rules of “standard” arithmetic are observed.

Do the following sentences belong to \(L(\text{ONE}) \)? Why? Why not?
\[
\begin{align*}
\text{s} & = 1 + 2 \ast 3 \\
\text{s} & = (1 + 2) \ast 3 \\
\text{s} & = a + 3
\end{align*}
\]
Abstract Syntax Trees

We want to define an operational semantics, i.e., an abstract interpreter for the language, but parse trees are not very convenient, too many non-terminal symbols ⇒ Abstract Syntax Tree (AST)

Transformation Rules:

\[
\langle N \rangle \\
T \\
\Rightarrow \\
T
\]

\[
\langle N \rangle \\
A \quad \text{op} \quad B \\
\Rightarrow \\
A \quad B
\]

Note: This rule also applies to unary operators and operators with arity > 2.
Definition: An abstract syntax tree is a finite, labeled, directed tree, where the internal nodes are labeled by operators, and the leaf nodes represent the operands of the node operators. -Wikipedia, 2006

Observation: The abstract syntax tree is a simplified form of the parse tree: same order as the parse tree, but no non-terminals.
What happens to parentheses in the AST representation of a program?

- They are **not needed**!
- ASTs naturally represent associativity and precedence relations.
- Consider: \((1 + 2) * 3\)
- Parentheses do not contribute to computations, therefore the following tree transformations can be applied:

\[
\begin{align*}
\langle N \rangle & \\
\quad \quad \quad \quad \quad \quad \quad (T) & \Rightarrow (\quad) \\
& \Rightarrow T
\end{align*}
\]
We can represent ASTs in Prolog:

```
plus(const(1),times(const(2),const(3)))
```
A simple interpreter that computes a semantic value for syntactic constructs, the computation of this semantic value can be interpreted as the behavior: myeval / 2, AST input and semantic value as output.

```prolog
myeval(plus(X,Y),Value) :-
    myeval(X,XValue),
    myeval(Y,YValue),
    Value is XValue + YValue.

myeval(times(X,Y),Value) :-
    myeval(X,XValue),
    myeval(Y,YValue),
    Value is XValue * YValue.

myeval(const(X),Value) :- Value = X.
```

?- myeval(const(1),X).
X = 1
Yes

?- myeval(plus(const(1),const(2)),X).
X = 3
Yes

?- myeval(plus(const(1),times(const(2),const(3))),X).
X = 7
Yes
With our semantics (interpreter) in place we can now compute the semantic value of any expression program, e.g.

```
1+2*3
```

```
plus(const(1),times(const(2),const(3)))
```

```
?- myeval(plus(const(1),times(const(2),const(3))),X).
X = 7
```
Exercises

- Extend the grammar for language ONE with the subtraction operator
- Extend the operational semantics appropriately, e.g.,
 - 6 – 3 should give the value 3
 - Assume that the abstract syntax of this operator is sub(x,y).
- Compute the semantic value for the following expressions:
 - sub(3,1)
 - sub(4,2)
Exercises

- Extend the grammar for language ONE with the ‘!’ factorial operator.
- Extend the operational semantics appropriately, e.g.,
 - 3! should give the value 6
 Assume that the abstract syntax of this operator is fact(x).
- Compute the semantic value for the following expressions:
 - fact(3)
 - fact(4)