
Prolog Rules
Prolog rules are Horn clauses, but they are written “backwards”, consider:

"X,Y[woman(X) Ù parent(X,Y) ® mother(X,Y)]

is written in Prolog as

mother(X,Y) :- woman(X) , parent(X,Y) .

Implies (“think of ¬”)

“and”

head body

You can think of a rule as introducing a new “fact” (the head), but the fact is
defined in terms of a compound goal (the body). That is, predicates defined as
rules are only true if the associated compound goal can be shown to be true.

Prolog rules are implicitly
universally quantified!

Prolog Rules
% a simple prolog program
woman(pam).
woman(liz).
woman(ann).
woman(pat).

man(tom).
man(bob).
man(jim).

parent(pam,bob).
parent(tom,bob).
parent(tom,liz).
parent(bob,ann).
parent(bob,pat).
parent(pat,jim).

mother(X,Y) :- woman(X),parent(X,Y).

Queries:
?- mother(pam,bob).
?- mother(Z,jim).
?- mother(P,Q).

Demo of ‘trace’ predicate for mother.

Prolog Rules

The same predicate name can be defined by multiple rules. Assume that
our program looks like the following,

brother(fred,john).
sibling(X,Y) :- sister(X,Y) .
sibling(X,Y) :- brother(X,Y).

Then our query,

?- sibling(fred,Q).

By trying the first rule and fail, backtracking to the second rule, trying that, and
succeed.

Another Simple Prolog Program
Consider the program relating humans to mortality:

mortal(X) :- human(X).
human(socrates).

We can now pose the query:

?- mortal(socrates).

True or false?

Declarative vs. Procedural
Meaning

When interpreting rules purely as Horn clause logic statement ® declarative

When interpreting rules as “specialized queries”® procedural

Observation: We design programs with declarative meaning in our minds,
but the execution is performed in a procedural fashion.

Consider:

mother(X,Y) :- woman(X),parent(X,Y).

Reading

l Read Chap 20 in MPL

Lists & Pattern Matching

l The unification operator: =/2
l The expression A=B is true if A and B are terms

and unify (look identical)

arity

?- a = a.
true

?- a = b.
false

?- a = X.
X = a

?- X = Y.
true

Lists & Pattern Matching

l Lists – a convenient way to represent abstract
concepts
l Prolog has a special notation for lists.

[a]
[a,b,c]
[]

Empty
List

[bmw, vw, mercedes]
[chicken, turkey, goose]

Lists & Pattern Matching

l Pattern Matching in Lists

?- [a, b] = [a, X].
X = b

?- [a, b] = X.
X = [a, b]

But:

?- [a, b] = [X].
no

l The Head-Tail Operator: [H|T]

?- [a,b,c] = [X|Y];
X = a
Y = [b,c]

?- [a] = [Q|P];
Q = a
P = []

Lists - the First Predicate

The predicate first/2: accept a list in the first argument and return
the first element of the list in second argument.

first(List,E) :- List = [H|T], E = H;

Lists - the Last Predicate

The predicate last/2: accept a list in the first argument and return
the last element of the list in second argument.

Recursion: there are always two parts to a recursive definition;
the base and the recursive step.

last([A],A).
last([A|L],E) :- last(L,E).

Lists - the Append Predicate
The append/3 predicate: accept two lists in the first two parameters, append
the second list to the first and return the resulting list in the third parameter.

Hint: use recursion.

append([], List, List).
append([H|T], List, [H|Result]) :- append(T, List, Result).

Exercise: The halve/3 Predicate

l Design the predicate halve/3 that takes
a list as its first argument and returns two
lists each with half the elements of the
original list (similar to the function halve
we studied in Asteroid).
l halve([1,2],[1],[2])
l halve([1],[1],[])
l halve([],[],[])

