
Logic as a Programming Language

⚫ Logic can be considered the oldest programming

language

⚫ Aristotle invented propositional logic over 2000 years ago

in order to prove properties of formal arguments

⚫ Propositions - simple statements that are either true or

false; e.g. Betty wears a white dress. Today is Sunday.

⚫ Propositional Logic  propositions + rules of inference

⚫ Most famous inference rule: modus ponens

(1) Inference is the act or process of drawing a conclusion based solely on what one already knows.

(2) Rule of inference is a scheme for constructing valid inferences.

Let A and B be propositions, then

 A implies B
 A is true

 B is true

Reading:

MPL chap 19

Reading

⚫ MPL Chapter 19

Propositional Logic

Example:

 If Betty wears a white dress then today is Sunday.

 Betty wears a white dress.

--
 Today is Sunday.

A fundamental problem with propositional logic is that it is not powerful

enough to encode general knowledge - we would like to say things like:

 All objects that are considered human are mortal.

Due to the fact that this sentence is not simple it can not be considered

a proposition. But these kind of sentences are key in describing

general knowledge.

Quantification

Friedrich Ludwig Gottlob Frege

Philosopher and Logician

o In 1879 Gottlob Frege introduced the

predicate calculus (‘Begriffsschrifft’)

o Today predicate calculus is more commonly

known as First Order Logic.

o This logic solves the problems of propositional
logic by introducing three new structures:

predicates, universal quantification, and

existential quantification.

First-Order Logic

⚫ Quantified Variables

⚫ Universally quantified variables

X – for All objects X

⚫ Existentially quantified variables

Y – there Exists an object Y

First-Order Logic

⚫ Predicates
⚫ Predicates are functions that map their arguments into true/false

⚫ The signature of a predicate p(X) is

p: Objects → { true, false }

⚫ Example: human(X)
⚫ human: Objects → { true, false }

⚫ human(tree) = false

⚫ human(paul) = true

⚫ Example: mother(X,Y)
⚫ mother: Objects  Objects → { true, false }

⚫ mother(betty,paul) = true

⚫ mother(giraffe,peter) = false

First-Order Logic

⚫ We can combine predicates and

quantified variables to make statements

on sets of objects

⚫ X[mother(X,paul)]

⚫ there exists an object X such that X is the

mother of Paul

⚫ Y[human(Y)]

⚫ for all objects Y such that Y is human

First-Order Logic

⚫ Logical Connectives: and, or, not

⚫ FC[parent(F,C) and male(F)]

⚫ There exists an object F for all object C such

that F is a parent of C and F is male.

⚫ X[day(X) and (sunny(X) or rainy(X))]

⚫ For all objects X such that X is a day and X is

either wet or dry.

First-Order Logic

⚫ If-then rules: A → B
⚫ XY[parent(X,Y) and woman(X) → mother(X,Y)]

⚫ For all objects X and for all objects Y such that if X is a

parent of Y and X is a woman then X is a mother.

⚫ Q[human(Q) → mortal(Q)]

⚫ For all objects Q such that if Q is human then Q is mortal.

Logic Formulas

⚫ First-order logic allows you to construct

extremely complex statements, e.g.,

⚫ These statements are difficult to

mechanize.

Horn Clause Logic

In horn clause logic the form of the WFF’s is
restricted:

 P1  P2  …  Pn-1  Pn → P0

Where P0 , P1 , P2, … Pn-1, Pn are predicates.

Conjunctions only!

Single predicate in consequent

Proving things is computation!

Use resolution to reason with horn clause expressions - resolution mimics

the modus ponens using horn clause expressions.

Advantage: this can be done mechanically (Alan Robinson, 1965)

J. Alan Robinson: A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12(1): 23-41 (1965)

“Deduction is Computation”

Basic Prolog Programs

Prolog  Programming in Logic

Facts - a fact constitutes a declaration of a truth; in Prolog it has to

 to be a positive assertion.

Prolog Programs - a Prolog program is a collection of facts (…and rules,

 as we will see later).

Example: a simple program

 man(phil).

 man(john).
 woman(betty).

Facts, Prolog will treat these as true and enters

them into its knowledgebase.

We execute Prolog programs by posing queries on its knowledgebase:

?- man(phil).

 true - because Prolog can use its knowledgebase to prove true.
?- woman(phil).
 false - this fact is not in the knowledgebase.

Prompt

Prolog - Queries & Goals

A query is a way to extract information from a logic program.

Given a query, Prolog attempts to show that the query is a logical

consequence of the program; of the collection of facts.

When queries contain variables, they are existentially quantified, consider

 ?- parent(X,liz).

The interpretation of this query is: prove that there is at least one object X

that can be considered a parent of liz, or formally, prove that

 X[parent(X,liz)]

holds.

NOTE: Prolog will return all objects for which a query evaluates to true.

NOTE: A variable in Prolog is a term that starts with a capital letter. Everything

else in Prolog has to be written in lower case.

A Prolog Program

A Family Tree

% a simple prolog program

woman(pam).

woman(liz).

woman(ann).

woman(pat).

man(tom).

man(bob).

man(jim).

parent(pam,bob).

parent(tom,bob).

parent(tom,liz).

parent(bob,ann).

parent(bob,pat).

parent(pat,jim).

Parent

Relation

Example Queries:
?- woman(pam).

?- woman(X). X[woman(X)]?

?- parent(tom,Z).

?- father(Y).

Demo of ‘trace’ that demonstrates the search in Prolog

https://replit.com/@lutzhamel/prolog-csc301#Examples/family.pl

Compound Queries

A compound query is the conjunction of individual simple queries.

Stated in terms of goals: a compound goal is the conjunction of individual

subgoals each of which needs to be satisfied in order for the compound goal

to be satisfied. Consider:

 ?- parent(X,Y) , parent(Y,ann).

or formally,

 X,Y[parent(X,Y)  parent(Y,ann)]

When Prolog tries to satisfy this compound goal, it will make sure that the

two Y variables always have the same values.

Prolog uses unification and backtracking in order to find all the solutions

which satisfy the compound goal.

Unification & Backtracking

⚫ Unification is a special kind of pattern

matching that instantiates variables with

terms/objects.

⚫ Backtracking allows Prolog to search for

all unifications, called substitutions, that

make a query true.

Reading

⚫ MPL Chapter 19

	Slide 1: Logic as a Programming Language
	Slide 2: Reading
	Slide 3: Propositional Logic
	Slide 4: Quantification
	Slide 5: First-Order Logic
	Slide 6: First-Order Logic
	Slide 7: First-Order Logic
	Slide 8: First-Order Logic
	Slide 9: First-Order Logic
	Slide 10: Logic Formulas
	Slide 11: Horn Clause Logic
	Slide 12: Proving things is computation!
	Slide 13: Basic Prolog Programs
	Slide 14: Prolog - Queries & Goals
	Slide 15: A Prolog Program
	Slide 16: Compound Queries
	Slide 17: Unification & Backtracking
	Slide 18: Reading

