Polymorphism

A closer look at types....

polymorphism = comes from Greek meaning ‘many forms’

In programming:

Def: A function or operator is polymorphic if it has at
least two possible types.

Read MPL Chap 8

Polymorphism

Different types of polymorphisms

Polymorphism

) Duck Typing
Parametric “the duck test”™

Types with type variables Asteroid & Python
Rust: vec<T>

Ad hoc (overloading) Subtyping
Asteroid & Python: operator overloading, Python: Class inheritance
e.g. 1+2, “Hello” + "There”

*If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck. --Wikipedia

Ad Hoc Polymorphism (overloading)

Def: An overloaded function name or operator is one that has at least two
definitions, all of different types.

Example: In Asteroid the ‘+’ operator is overloaded. It can function as
a string concatenation operator or as an addition operator depending
on the type context — polymorphism!

Asteroid Version 1.1.3

(c) University of Rhode Island
Type "asteroid -h" for help
Press CTRL-D to exit

last> "abc"+"def" == "abcdef"
true

[ast> 345 == 8

true

ast> ||

Parametric Polymorphism

Def: A function/structure exhibits parametric polymorphism if it has a type
that contains one or more type variables.

4LExam Ie: RUSt struct Data<T> {

value:T, // T is a type variable

¥

fn main() {
// instantiating Data with i32 data
M) let t:Data<i32> = Data{value:350};
println!("value is :{} ",t.value);

// instantiating Data with String data
let t2:Data<String> = Data{value:"Tom".to_string()};
println!("value is :{} ",t2.value);

Source: https://www.tutorialspoint.com/rust/rust_generic_types.htm

Subtype Polymorphism

Def: A function or operator exhibits subtype polymorphism if one or more
of its types have subtypes.

Subtype Polymorphism

Example: Java

class Cup{... };
class CoffeeCup extends Cup { ... };

class TeaCup extends Cup { ... };

TeaCup t = new TeaCup();
Cup ¢ = t;™~ type coercion: TeaCup — Cup

— _/

safe! SuperType
void fill (Cup c) {...} upertyp

TeaCup t = new TeaCup();
CoffeeCup k = new CoffeeCup();

fill(t):
fill(k);

} subtype polymorphism

Duck Typing

e Duck typing in computer programming is an
application of the duck test—"/If it walks like
a duck and it quacks like a duck, then it
must be a duck"—to determine if an object
can be used for a particular purpose.
With normal typing, suitability is determined by
an object's type.
In duck typing, an object's suitability is
determined by the presence of certain

methods and properties, rather than the
type of the object itself. No common base

type!

https://en.wikipedia.org/wiki/Duck_typing

Duck Typing

1 —— A demonstration of duck typing
P Example: a § load system io.
polymorphlc list 42 —— define some types with the property 'fly'
with Duck Typing. 5 structure Duck with

6 function fly with none do
7 io @rintln "a duck can fly".
8 k end
9 end
10

lutz$ asteroid ducktyping.ast 11 structure Plane with

a duck can fly 12 function fly with none do

a plane can fly 13 io @println "a plane can fly".

lutz$ [14 end - . .
15" end Polymo_rphlc list: list with
16 many different types
17 —— create a polymorphic liw
18/ let 1= [Duck(),Plane()].
19
20 —— use the interface that is common to all the objects
21 for e in 1 do
22 e @fly ().
23 end

Duck Typing

e Duck typing is not possible in statically
typed languages like Rust, C++, and
Java

e Instead, in this languages one has to rely
on subtype polymorphism in order to
construct a polymorphic list.

import java.util.*;

DUCk I ypl abstract class ThingsThatFly { // base class of the hierarchy

abstract void fly();
k

class Duck extends ThingsThatFly {
void fly() {
System.out.println("a duck can fly");
}
}

Subtype

class Plane extends ThingsThatFly {
void fly() {

ThingsThatFly System.out.println("a plane can fly");
}
/‘ ¥ Can only declare lists of
_ a single type!
SuperType class Main {
public static void n(String args[]) {
// create a 1ist‘ThingsThatF1y
ArrayList<ThingsThatFly> list = new ArrayList<ThingsThatFly>();
javac Main. java list.add(new Duck());
java Main list.add(new Plane());
a duck can fly // print the arraylist objects
a plane can fly for (int 1 = 0; 1 < list.size(); i++) {
I list.get(1).fly();
}

}

Reading

e MPL chap 8

