
Memory Locations for Variables
Modern programming languages have many different classes of
Variables, e.g.

(1) Global variables
(2) Parameters
(3) (function) local variables (also called automatic or activation-specific)
(4) (object-oriented) member variables
(5) Etc.

It is the job of the language system to keep track of the values of these
variables during the runtime of a program.

Þ The language system accomplishes this by binding a variable to a
memory location and then uses that memory location to store the
value of the variable.

Reading

l Chap 12 in MPL

Memory Locations for Variables
In imperative programs this is a fairly transparent process - the assignment
operator mimics what happens at the hardware level - namely, the updating
of memory cells.

In functional and logic programming languages this is often not so obvious,
since there is no global state, but still, variables are bound to memory locations.

Activation Records
In order to track variables for functions, compilers use a data structure
called activation record - collects all the variables belonging to one function
into this structure.

Example: FORTRAN

FUNCTION AVG (M,N)
SUM = M + N
AVG = SUM/2.0
RETURN
END

(Main)

AVG(4,2)

Code:

AVG

RETURN

…

…

…

Global
Data:

M
N
SUM
<return addr>

Activation Record

Note: Activation Records are often called Frames

Activation Records

Note: Non-recursive languages such as FORTRAN keep a single activation
record per function in the program.

Recursive languages (ML, Java, C, C++, etc) keep a stack of activation
records; one per function call.

The Runtime Stack

(Main)Code:

(function code)

RETURN

…

…

Global
Data:

<local vars>

<return addr>

<next record>

Activation Record

<Stack pointer>
<local vars>

<return addr>

<next record>

Activation Record

Runtime Stack

Java Example
int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

We are evaluating fact(3). This
shows the contents of memory
just before the recursive call that
creates a second activation.

int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

This shows the contents of
memory just before the third
activation.

Java Example

int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

This shows the contents of
memory just before the third
activation returns.

Java Example

int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

The second activation is about
to return.

Java Example

int fact(int n) {
int result;
if (n<2) result = 1;
else result = n * fact(n-1);
return result;

}

The first activation is about to
return with the result fact(3) = 6.

Java Example

