Functions as First-Class Citizens

e Functions as first-class citizens means that
we can pass functions around in a program
as values, not much different than an
integer or real value!

e When functional languages first appeared
in the late 1970’s and the 1980’s this was a
radical concept

e Today almost all modern languages
support this, e.g.
Asteroid, Python, JavaScript, Rust, Go

Functions as First-Class Citizens

—— first-class functions

function inc with i do
return i+l.

end ."’

let foo = inc. —- foo now holds a function value
let x = foo(1l). —— execute the function value with argument 1.
assert (x == 2).

1
2
3
4
o)
6
7
8
9

e Python supports functions as first-class
citizens

lutz$ python3

Python 3.8.2 (default, Jun 8 2021, 11:59:35)
[Clang 12.0.5 (clang-1205.0.22.11)] on darwin
Type "help", "copyright", "credits" or "license"
(>>> def inc(i):

— return i+1

e

[»»>: foo: = inc

[>>> foo(1)

2

>>> |}

for more information.

Higher-Order Programming

e Higher-order programming refers to the
fact that we take advantage of functions
as values in our algorithms.

e Note: Higher-Order programming does
not refer to applying functional
programming to more difficult problems.

Generic Functions

e One interesting consequence of
functions as values is that we can write
generic functions whose behavior we
can influence by passing in functions.

e |n the following ‘c’ is a generic function
whose behavior we can influence by
passing in specific functions

Generic Functions

1 —— first-class functions

2

3 function inc with i do

4 return i+l.

5 end

6

i function dec with i do

8 return i-1.

9 end
10
11 - C expects a func? f and a value v and
i —— returns the valu®of applying f to v.
13 function ¢ with (f,v) do

14 return f(v).

15 end

16

17 —— we can now modify the behavior of c¢ by
18 -— passing in different functions

19 let x = cl{inc,1).
20 assert(x==2).
Zi
22 let y = c(dec,1).
23 assert(y==0).

first-class functions

define our increment function
def inc(i):
return i+l

define our decrement function
def dec(i):
return i-1

c expects a function and a value
def c(f,v):
return f(v)

we can modify c's behavior depending what kind of
function we pass 1it.

X =ch (Hinc;1)
assert(x == 2)

y = ¢ (dec,1)
assert(y == 0)

Function Dispatch Table

e Another powerful idea from higher-order
programming is the idea of function
dispatch tables

e Here we store functions in a table
indexed by some sort of key

e Given a key we retrieve the associated
function and execute it

Function Dispatch Tables

1 —— program to demonstrate function dispatch tables
2 load system hash.

3

4 —— functions to be put into the dispatch table
5 function good_morning with name do

6 return ("Good morning, "+name+"!").

o end

8

9 function good_afternoon with name do

10 return ("Good afternoon, "+name+"!").

1d end

12

13 function good_evening with name do

14 return ("Good evening, "+name+"!").

15 end

16

17 —— create our dispatch table

18 let myhash = hash @hash(). l

19 myhash @insert ("morning",good_morning).
20 myhash @insert ("afternoon",good_afternoon).
21 myhash @insert ("evening",good_evening).
22
23 —— test out dispatch table
24 let greeting_function = myhash @get ("morning").
25 assert(greeting_function ("Joe") == "Good morning, Joe!").

Function Dispatch Tables

We can do the
same thing in
Python!

O 00O NOYULULL B WIN -

NNRRRRBRRRRRRR
P ® WO NOOUDN WNROS

program to demonstrate function dispatch tables

functions to be put into the dispatch table
def good_morning(name):
return ("Good morning, "+name+"!")

def good_afternoon(name):
return ("Good afternoon, "+name+"!")

def good_evening(name):
return ("Good evening, "+name+"!")

create our dispatch table

myhash = dict()
myhash.update({"morning":good_morning})
myhash.update({"afternoon":good_afternoon})
myhash.update({"evening":good_evening})

test out dispatch table
greeting_function = myhash["morning"]
assert(greeting_function("Joe") == "Good morning, Joe!")

The Lambda Function

e The most well-known feature of higher-order programming
is the lambda function.

e A lambda function is a function definition without a name.

e In functional-style programming this is often used for
functions that are so trivial that they don’t warrant a full
function definition

Asteroid Version 1.1.3

(c) University of Rhode Island

Type "asteroid -h" for help

Press CTRL-D to exit

last> let y = (lambda with x do x+1) 1. -
last> vy

2

ast> ||

Python 3.9.6 (default, Sep 13 2022, 22:03:16)
[Clang 14.0.0 (clang-1400.0.29.102)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
[>>> y = (lambda x : x+1) (1) -

>>> y

2

>>> |}

The Lambda Function

e Lambda functions are values!

Asteroid:

last> let p = (lambda with x do x+1).
last> let y = p(1).
last> y Python:

2 (>>> p = (lambda x : x+1)
ast> || >>> y = p(1)

>>> y

2

>>> |}

e The true power of lambda functions only
becomes apparent when combined with
other higher-order programming features

The Map Function

e The map function allows you to replace
iteration over a list with mapping a
function onto the list.

e The map function is a higher-order
function since it expects a function as a
parameter.

The Map Function

e Asteroid

iteration

—— compute a list whose elements are incremented

—— by one compared to the input list
let a = [1,2,3].
let b = [].

mapping

—— iterate over the list
for e in a do

b @append(e+1). 1
end 2
3
assert(b == [2,3,4]). 4
5
6
7
9
10

—— compute a list whose elements are incremented
—— by one compared to the input list

let a
let b

[1,2,3].
(1.

—— using map
let b = a @map(lambda with i do i+1). <

assert(b == [2,3,4]).

The Map Function

e Python

compute a list whose elements are incremented
by one compared to the input list

HH*

a = [1;213]
b = [I

iterate over the list

for e in a: '
b.append(e+1)

i | # compute a list whose elements are incremented
assert(b == [2,3,4]) § # by one compared to the input list

4 a = [kl

5 b=1[Il

6

7 # using map

87 b = list(map((lambda x : x+1), a)) -

9

102 assert(b == [2,3,4])

The Map Function

e One way to think about map is that it applies the
given function to each element of the list.

[
(lambda with i do i+1) 1,

[1,2,3] @map(lambda with i do i+1) ‘ (lambda with i do i+1) 2,
(lambda with i do i+1) 3

!

]

The Map Function

e The lists themselves can consist of structured
objects — the supplied function must be able to
handle the elements of the list as arguments.

e The return value of the function being mapped
can be different from its input values.

—— applying map to a list of tuples ‘
let 1= 1[(1,2),(3,4),(5,6)] @map(lambda with (x,y) do x+y).
assert(l = [3,7,11]):

The Map Function

e Map is not restricted to lambda functions

e You can map any appropriate function
onto a list.
e Advantage of this approach

No iteration
A quick way to transform a list

The Map Function

—— show that map will map any function onto a list
—— here we map a greeting onto a list of names
— the result is a list of greetings

let names = ["Joe","Bridget","Peter"].

function greeting with name do
return "Hello "+name+"!",

end JlL

let greetings = names @map greeting.
assert(greetings == ["Hello Joe!","Hello Bridget!","Hello Peter!"]).

O 00O NO UL A WN -

e
N RS

The Map Function

O 00 NJO U B WN B

[
(S

show that map will map any function onto a list
here we map a greeting onto a list of names
the result is a list of greetings

names = ["Joe","Bridget","Peter"]

def greeting(name):
return "Hello "+name+"!" l

greetings = list(map(greeting, names))
assert(greetings == ["Hello Joe!","Hello Bridget!","Hello Peter!"])

Class Exercise

e Given the Asteroid program
on the right do the
fOIIOWing: function inc_list with input_1list do

Rewrite inc_list as a let output_list = [].

recursive function using for e in input_list do
muIti-dispatch. output_list @append(e+1).
o : d
Rewrite inc list as a & |
. T . return output_list.
function that utilizes the list -
‘@map’ function to
accomplish the let 1= [1,2,31.
computatlon. let new_list = inc_list(1).
Demonstrate that your assert(new_list == [2,3,4]).
functions work.

https://replit.com/@LutzHamel1/asteroid-csc301-classexercise-inclist#examples/inclist.ast

https://replit.com/@LutzHamel1/asteroid-csc301-classexercise-inclist

Assignment

e Assignment #4 — See BrightSpace

