Functional Programming

e Functional programming is defined by:

Programs exclusively consist of recursive definitions of
functions

Everything is a value — no statements allowed
» We do allow:

« Function definition statements ©
o Let statements for giving names to expressions
e Return statements

Declarative approach to data via the use of pattern
matching.

Functions as first-class citizens
e This gives rise to higher-order programming.

e Functional Asteroid is called with ‘-F’ switch
asteroid —F <program>

The Factorial Revisited

e Let’s start with something simple: Factorial

—— factorial with if-stmt

function fact with n do
if n == 1 do . .
’ eturn 1. The problem is that if statements
else are not supported in the functional
return n x fact(n-1).

ond programming paradigm — they do
end not compute a value!

assert(fact(3) == 6).

[lutz$ asteroid -F fact-stmt.ast
error: fact-stmt.ast: 4: if statement is not supported in functional mode

lutz$ [

The Factorial Revisited

e Let's rewrite this so everything is a value

“~Factorial with if=exp We use a conditional expression
to compute the return value

function fact with n do
return 1 if n==1 else nxfact(n-1).
end

function fact with n do

Since functions are only allowed 1 if n==1 else nxfact(n-1).

. d
to compute return values there is =~ "
no need for the explicit ‘return’. assert(fact(3) == 6).

[lutz$ asteroid -F fact-exp.ast
lutz$ |

e SML is one of the classic functional
languages next to Lisp.

e A web-based implementation of SML Is
available here,

https://sosml.org

Asteroid

—— factorial with if-exp

TG e nAT s o A * factorial using if expression *
1 if n==1 else nxfact(n-1). fact n = n= n*fact(n-1);
end

fact = .
assert(fact(3) == 6). !

Lists: Listsum

e Let’s see how functional programming
works with lists

Remember: no loops!
Everything has to be done with recursion
e Program: Assume we are given a list of
Integer values, sum all the integer values
on the list. E.g. [1,2,3] => 6
e We need to use recursion.
Base case
Recursive step

Lists: Listsum

e Notice the recursion in our solution,
Base case: []=>0

Recursive step: pull the first element off the list and add it to
the result of the recursive call over the rest of the list,

o hd(l)+listsum(ti(1))

e hd - first element

o tl —rest of list

—— sum the integer values on a list

function listsum with 1 do
® if 1==[] else hd(l)+listsum(t1(1)).
end

assert(listsum([1,2,3]) == 6). [iutz$ asteroid -F list-sum.ast
utz$ [

SML & Listsum

Asteroid

—— sum the integer values on a list
function listsum with 1 do
0 if 1==[] else hd(1)+listsum(tl1(1)).

end

assert(listsum([1,2,3]) == 6).

SML

* sum integer values on a list *
listsum 1 = hd(l)+listsum(tl(1l));

listsum

Class Exercise

e Write a program that given a list will count
the number of elements on the list.

E.g.[1,2,3]=>3,and[]=>0
e Write a program that given a list of integer
values will return a list where each value
on the list is double the value of the original
value.
E.g.[1,2,3] =>[2,4,6],and [] =>[]
e All programs need to be written In

functional Asteroid and need to be run with
the *-F’ flag in place.

Multi-Dispatch

e Since most functional programs consist of
recursive functions all these functions will
have a top-level ‘if-else’ expression to deal
with the base vs recursive step.

e That style of programming gets tiring very
fast and the code Is not very readable.
e The solution: Multi-Dispatch

Introduce one function body for each of the
steps.

Multi-Dispatch

Instead of this...

—— factorial with if-exp

function fact with n do
1 if n==1 else nxfact(n-1).
end

assert(fact(3) == 6).

Advantage: implicit testing
or pattern matching of the
function arguments!

Do this...

—— factorial with multi-dispatch

function fact

with 1 do —— function argument
1
with n do —— function argument
nkfact(n-1).
end

assert(fact(3) == 6).

Multi-Dispatch: SML

Instead of this...

* factorial using if expression *

fact n = n= n*fact (n-

fact

Do this...

* factorial with multi-dispatch *
fact
fact n n*fact(n-1);

fact

Multi-Dispatch

Instead of this...

—— sum the integer values on a list

function listsum with 1 do

0 if 1==[] else hd(l)+listsum(tl(1)).
end

assert(listsum([1,2,3]) == 6).

Do this...

—— sum the integer values on a list

function listsum

Notice that we can pattern S <

match on the structure of a with 1 do

list: E.Q. [] hd(1)+listsum(t1(1)).
end

assert(listsum([1,2,3]) == 6).

Pattern Matching

e |In programming values have structure

Lists are comprised of a sequence of elements

Pairs are made up of two ordered values: first
component and second component

Integers are single values without a decimal part
¢ In pattern matching we state the expected structure
of a value as a pattern possibly with variables

If the pattern matches the expected value, then we say
that the pattern-match was successful, and variables will
be bound to parts of the value that they matched.

Example: (a,b) < (1,2) with a=1 and b=2
Example: 1 — 1
Example: x «— 3 with x=3

Head-Tail Pattern Matching

e Instead of using ‘hd’ and ‘tI' we can use pattern matching with the
head-tail pattern Th |t].

[h|t] <« [1,2,3]

/

h=1
first element
of list

t=1[2,3]
rest of list
without first
element

Head-Tail Pattern Matching

e In listsum the head-tail pattern takes care of
the analysis of the list!

Instead of this...

—— sum the integer values on a list

function 1listsum

v e Do this...
with 1 do —— sum the integer values on a list
hd(1)+listsum(t1(1)).
end function listsum
with [] do
assert(listsum([1,2,3]) == 6).)
' with [h|t] do
h+listsum(t).
end

assert(listsum([1,2,3]) == 6).

Head-Tail Pattern Matching

e The hallmark of this
multi-dispatch approach
IS that the interpreter

does a lot of work for function listsum
with [] do

you for free: .

It executes the body that Wi;thhlt] ?o)
matches the function end* istsum(t).
argument

|f the head_tall pattern _asser't(listsum([1,2,3]) == 6).
matches the function

argument it instantiates

the first element in

variable h and the rest of

the list in variable t.

—— sum the integer values on a list

Head-Tall Pattern

We went from this...

—— sum the integer values on a list
function listsum with 1 do
0 if 1==[] else hd(1)+listsum(tl(1)).

end

assert(listsum([1,2,3]) == 6).

Matching

To this...

—— sum the integer values on a list

function listsum
with [] do
0
with [h|t] do
h+listsum(t).
end

assert(listsum([1,2,3]) == 6).

Head-Tail Pattern Matching:
\/

e Head-Tall pattern matching is also
available in SML

—— sum the integer values on a list

function listsum
with [] do
7}
with [h]|t] do
h+listsum(t).

end * listsum head-tail pattern matching *

listsum =

assertifistsumit, 2,500 = 6)- listsum (h::t) = h+listsum(t);

listsum =6;

Head-Tall Pattern Matching:
PVINOr

e Python also supports head-tail pattern
matching...

Python 3.9.6 (default, Sep 13 2022, 22:03:16)

[Clang 14.0.0 (clang-1400.0.29.102)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> (h,*t) = [1,2,3]

>>> h

1

>>> t

Functional Style Programming In

A recursive program with pattern matching in Python

Functional programming is more explicit about the intentions
of a program

This is often called declarative programming

Functional and logic programming are considered declarative
programming paradigms

def listsum(1l):
acc = 0
for v in 1:
acc += v
return acc

assert(listsum([1,2,3]) == 6)

Imperative Programming

def listsum(1):
match 1:
case [] :
return @
case (h,*t) :
return h+listsum(t)

assert(listsum([1,2,3]) == 6)

Functional Programming

Wildcard Pattern

e If we need to match a value but we don’t
care what that value Is, we can use a
wildcard pattern * ’

—— wild card pattern

function zero

with @ do
"zero" —— wild card pattern in structures
with _ do —— wild card
"something else" function pair
end with (1,1) do
"pair with two ones"
assert(zero(@) == "zero"). with (a,_) do — wild card within structure
assert(zero(1l) == "something else"). "pair with first component: "+a
with _ do
"not a pair"
end
assert(pair (1,1) == "pair with two ones").
assert(pair (3,4) == "pair with first component: 3").

assert(pair (1,2,3) == "not a pair").

Type Patterns

Type patterns match all the values of a particular type.

Type patterns are written with the ‘%’ followed by the type name.
A type pattern that matches all integer values is %integer.

Type patterns can appear anywhere where patterns can appear.

All built-in types are supported: %integer, %real, %string, %list, %tuple,
%boolean

User defined type patterns are %<name of the structure>.

For example if you created a structure called MyStruct then the associated type
pattern is %MyStruct and will only match objects instantiated from MyStruct

—— a function that determines whether a value
—— 1s an integer value or not

function isinteger
with %integer do
true
with _ do
false
end

assert(isinteger(1) == true).
assert(isinteger(1.0) == false).

Conditional Patterns

e We can limit the values that a variable can match by using a
special conditional pattern: <var> : <pattern>

X:%real — states that ‘x’ can only match floating point values.
g:(%einteger,%integer) — states the ‘q’ can only match pairs of integer

values.
1 —— the typed version of factorial
2 — factorial is only defined over the integers
3
4 load system io.
5
6 function fact
7 with 1 do
8 1
9 with n:%integer do
10 nxfact(n-1)
11 with _ do
12 throw Error "not an integer value".
13 end
14
15 assert(fact(3) == 6).
16 try
17 fact(3.0)
18 catch s do
19 io @println s. —— catch the error
20 end

Structural Patterns

e Structural patterns means pattern
matching on structure in addition to
values.

e On the previous slide we saw one
Instance of that:

(%integer,%integer) — match pairs of integer
values.

Structural Patterns

e The empty list T], single element list ‘[e],
and the head-tail pattern ‘[x|y] are also
structural patterns...

function halve
with [] do
(r1, 1)
with [a] do
([al,[1)
with [a|b|rest] do
let (llist,rlist) = halve(rest).
([al+llist, [bl+rlist)
end

Here[a|b|rest]isthesameas[a|[b]|rest]].

Structural Patterns

e We can nest arbitrary structures as
patterns...

function merge

with ([],rlist) do
rlist

with (1list,[]) do
1list

with ([a|llist], [b|rlist]) do
[al+merge(1list, [b]+rlist) if a < b

else [b]l+merge([al+1list,rlist)

Patterns & Let

e Even though the ‘let’ statement looks like an assignment
statement it is actually a pattern-match statement of the form,

let <pattern> = <value>

e It takes the value on the right and pattern-matches it against the
pattern on the left.

e If the pattern contains variables, they will be instantiated in the
current namespace.

e All patterns we have discussed so far are also valid as let
statement patterns

—— examples of the let statement

let x = 1. -- the variable x is the simplest pattern possible

let 1 = 1. -- the 1 on the left is the pattern, on the right the value
let x:%integer = 1. — type patterns work here too

let (x,y) = (1,2). —— pattern instantiated x=1 and y=2

let ((a,b),(c,d)) = ((1,2),(3,4)). —— pair of pairs

let [a|b] = [1,2,3]. —- head-tail pattern match

o OO B WM

—— the mergesort

load system io.

The MergeSort

function mergesort
with [] do
[]
with [a] do
[a]
with 1 do

e Putting this all |
together —the = 0w

13 (1, 1)

O oo d oYUl b WN R

=
=

MergeSOrt 14 with [a] do
15 (lal, []1)

16 with [a|b|rest] do
17 let (llist,rlist) = halve(rest).
18 ([al+1list, [b]+rlist)
19 end
20 function merge
21 with ([1,rlist) do
22 rlist
23 with (llist,[]) do
24 1list
25 with ([a|llist], [b]rlist]) do

[al+merge(1list, [b]+rlist) if a < b

N
(o)}
AR

27 else [bl+merge([al+11list,rlist)
28 end

29 let (x,y) = halve(l).

30 merge(mergesort(x),mergesort(y)).

31 end

32

33 io @rintln(mergesort([3,2,1,0]1)).

e Asteroid User Guide
Functions

e https://asteroid-lang.readthedocs.io/en/latest/User%20Guide. html#functions

Pattern Matching

e https://asteroid-lang.readthedocs.io/en/latest/User%20Guide. html#pattern-matching

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Assignment

e Assignment #3 — see BrightSpace

	Slide 1: Functional Programming
	Slide 2: The Factorial Revisited
	Slide 3: The Factorial Revisited
	Slide 4: SML
	Slide 5: Lists: Listsum
	Slide 6: Lists: Listsum
	Slide 7: SML & Listsum
	Slide 8: Class Exercise
	Slide 9: Multi-Dispatch
	Slide 10: Multi-Dispatch
	Slide 11: Multi-Dispatch: SML
	Slide 12: Multi-Dispatch
	Slide 13: Pattern Matching
	Slide 14: Head-Tail Pattern Matching
	Slide 15: Head-Tail Pattern Matching
	Slide 16: Head-Tail Pattern Matching
	Slide 17: Head-Tail Pattern Matching
	Slide 18: Head-Tail Pattern Matching: SML
	Slide 19: Head-Tail Pattern Matching: Python
	Slide 20: Functional Style Programming in Python
	Slide 21: Wildcard Pattern
	Slide 22: Type Patterns
	Slide 23: Conditional Patterns
	Slide 24: Structural Patterns
	Slide 25: Structural Patterns
	Slide 26: Structural Patterns
	Slide 27: Patterns & Let
	Slide 28: The MergeSort
	Slide 29: Reading
	Slide 30: Assignment

