Functional Programming

e Functional programming is defined by:

Programs exclusively consist of recursive definitions of
functions

Everything is a value — no statements allowed
o We do allow:
o Function definition statements &

o Let statements for giving names to expressions
o Return statements

Declarative approach to data via the use of pattern
matching.

Functions as first-class citizens
e This gives rise to higher-order programming.
e Functional Asteroid is called with ‘-F’ switch
asteroid —F <program>

The Factorial Revisited

e Let's start with something simple: Factorial

—— factorial with if-stmt

function fact with n do
if n =1 do . .
R The problem is that if statements
else are not supported in the functional
return n x fact(n-1).

and programming paradigm — they do
end not compute a value!

gssert(fact(B) —)

1utz$ asteroid -F fact-stmt.ast

error: fact-stmt.ast: 4: if statement is not supported in functional mode
lutz$ [

The Factorial Revisited

e Let’s rewrite this so everything is a value

We use a conditional expression
to compute the return value

—— factorial with if-exp

function fact with n do
return 1 if n==1 else nxfact(n-1).
end

gssert(fact(3) = 0): -— factorial with if-exp

function fact with n do

Since functions are only allowed 1 if n==1 else nxfact(n-1).

. d
to compute return values thereis =~ "
no need for the explicit ‘return’. assert(fact(3) == 6).

1lutz$ asteroid -F fact-exp.ast
lutz$ [

e SML is one of the classic functional
languages next to Lisp.

e A web-based implementation of SML is
available here,

https://sosml.org

Asteroid
—— factorial with if-exp
function fact with n do * factorial using if expression *
1 if n==1 else nxfact(n-1). fact n = n= n*fact (n-
end

fact = .
assert(fact(3) == 6). !

Lists: Listsum

e Let's see how functional programming
works with lists

Remember: no loops!
Everything has to be done with recursion

e Program: Assume we are given a list of
integer values, sum all the integer values

on the list. E.g. [1,2,3] => 6
e \We need to use recursion.
Base case
Recursive step

Lists: Listsum

e Notice the recursion in our solution,
Base case: [|=>0

Recursive step: pull the first element off the list and add it to
the result of the recursive call over the rest of the list,

o hd(l)+istsum(ti(1))

e hd — first element

o tl —rest of list

—— sum the integer values on a list

function listsum with 1 do
0 if 1==[] else hd(l)+listsum(tl(l)).
end

. L ‘[1utz$ asteroid -F list-sum.ast
assert(listsum([1,2,3]) == 6). Jutzs]

SML & Listsum

Asteroid

—— sum the integer values on a list
function listsum with 1 do
0 if 1==[] else hd(1l)+listsum(tl(1)).

end

assert(listsum([1,2,3]) == 6).

SML

* sum integer values on a list *

listsum 1 = 1= hd(l)+listsum(tl(1l));

listsum

Class Exercise

e Write a program that given a list will count
the number of elements on the list.

E.g.[1,2,3]=>3,and[]=>0
e Write a program that given a list of integer
values will return a list where each value
on the list is double the value of the original
value.
E.g.[1,2,3]=>[2,46],and[]=>]]
e All programs need to be written in

functional Asteroid and need to be run with
the *-F’ flag in place.

Multi-Dispatch

e Since most functional programs consist of
recursive functions all these functions will
have a top-level ‘if-else’ expression to deal
with the base vs recursive step.

e That style of programming gets tiring very
fast and the code is not very readable.
e The solution: Multi-Dispatch

Introduce one function body for each of the
steps.

Multi-Dispatch

Instead of this...

—— factorial with if-exp

function fact with n do
1 if n==1 else nxfact(n-1).
end

assert(fact(3) == 6).

Do this...

—— factorial with multi-dispatch

function fact
with 1 do —— function argument
3!
with n do —— function argument

Advantage: implicit testing nsfact (n-1).
or pattern matching of the S
function arguments! assert(fact(3) == 6).

Multi-Dispatch: SML

Instead of this...

* factorial using if expression *

fact n = n= n*fact(n-1);

fact

Do this...

* factorial with multi-dispatch *
fact
fact n n*fact(n-1);

fact

Multi-Dispatch

Instead of this...

—— sum the integer values on a list

function listsum with 1 do

0 if 1==[] else hd(l)+listsum(tl(1)).
end

assert(listsum([1,2,3]) == 6).

Do this...

—— sum the integer values on a list

function listsum

Notice that we can pattern N =

match on the structure of a i

list: E.g. [] hd (1) +listsum(t1(1)).
end

assert(listsum([1,2,3]) == 6).

Pattern Matching

e |In programming values have structure
Lists are comprised of a sequence of elements

Pairs are made up of two ordered values: first
component and second component

Integers are single values without a decimal part
e |n pattern matching we state the expected structure
of a value as a pattern possibly with variables

If the pattern matches the expected value, then we say
that the pattern-match was successful, and variables will
be bound to parts of the value that they matched.

Example: (a,b) < (1,2) with a=1 and b=2
Example: 1 «— 1
Example: x « 3 with x=3

Head-Talil Pattern Matching

e Instead of using ‘hd’ and ‘tI' we can use pattern matching with the
head-tail pattern Th|t].

first element
of list

rest of list
without first
element

Head-Talil Pattern Matching

e In listsum the head-tail pattern takes care of
the analysis of the list!

Instead of this...

—— sum the integer values on a list

function listsum

e e Do this...
with 1 do —— sum the integer values on a list
hd(1)+listsum(tl(1)).
end function listsum
with [] do
assert(listsum([1,2,3]) == 6). 0
' with [h|t] do
h+listsum(t).
end

§ssert(listsum([1,2,3]) —

Head-Talil Pattern Matching

e The hallmark of this
multi-dispatch approach
Is that the interpreter

does a lot of work for function listsum
with [] do

you for free: .

It executes the body that with [h|t] do
matches the function enzﬂlstsum(t)-
argument

If the head-tail pattern assert(listsum([1,2,3]) == 6).
matches the function
argument it instantiates

the first element in
variable h and the rest of

the list in variable t.

—— sum the integer values on a list

Head-Tail Pattern

We went from this...

—— sum the integer values on a list
function listsum with 1 do
0 if 1==[] else hd(l)+listsum(tl(1)).

end

assert(listsum([1,2,3]) == 6).

Matching

To this...

—— sum the integer values on a list

function listsum
with [] do
0
with [h|t] do
h+listsum(t).
end

assert(listsum([1,2,3]) == 6).

Head-Tail Pattern Matching:
\/

e Head-Tall pattern matching is also
available in SML

—— sum the integer values on a list

function listsum
with [] do
0
with [h|t] do
h+listsum(t).
end * listsum head-tail pattern matching *
listsum =

_assert(llstsum([1,2,3]) — Matein (HEStY = W1 ioteuntels

listsum =63

Head-Tail Pattern Matching:

e Python also supports head-tail pattern
matching...

Python 3.9.6 (default, Sep 13 2022, 22:03:16)

[Clang 14.0.0 (clang-1400.0.29.102)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> (h,*t) = [1,2,3]

>>> h

1

- > -

[2; 3]

>>> ||

Functional Style Programming in
~VINor

A recursive program with pattern matching in Python

Functional programming is more explicit about the intentions
of a program

This is often called declarative programming

Functional and logic programming are considered declarative
programming paradigms

def listsum(1):
match 1:
case [] :
return @
case (h,*t) :
return h+listsum(t)

def listsum(1l):
acc =0
for v in 1:
acc += v
return acc

assert(listsum([1,2,3]) == 6) assert(listsum([1,2,3]) == 6)

Imperative Programming Functional Programming

Wildcard Pattern

e |If we need to match a value but we don’t
care what that value is, we can use a
wildcard pattern * ’

—— wild card pattern

function zero

with @ do
"zero" —— wild card pattern in structures
with _ do —— wild card
"something else" function pair
end with (1,1) do
"pair with two ones"
assert(zero(0) == "zero"). with (a,_) do —— wild card within structure
assert(zero(1) == "something else"). "pair with first component: "+a
with _ do
"not a pair"
end
assert(pair (1,1) == "pair with two ones").
assert(pair (3,4) == "pair with first component: 3").

assert(pair (1,2,3) == "not a pair").

Type Patterns

Type patterns match all the values of a particular type.

Type patterns are written with the ‘%’ followed by the type name.
A type pattern that matches all integer values is %integer.

Type patterns can appear anywhere where patterns can appear.

All built-in types are supported: %integer, %real, %string, %list, %tuple,
%boolean

User defined type patterns are %<name of the structure>.

For example if you created a structure called MyStruct then the associated type
pattern is %MyStruct and will only match objects instantiated from MyStruct

—— a function that determines whether a value
—— 1s an integer value or not

function isinteger
with %integer do
true
with _ do
false
end

assert(isinteger(1l) == true).
assert(isinteger(1.0) == false).

Conditional Patterns

e We can limit the values that a variable can match by using a
special conditional pattern: <var> : <pattern>

X:%real — states that X’ can only match floating point values.
q:(%integer,%integer) — states the ‘q’ can only match pairs of integer

values.

1 —— the typed version of factorial

2 —— factorial is only defined over the integers

3

4 load system io.

5

6 function fact

7 with 1 do

8 1

9 with n:%integer do

10 nxfact(n-1)

11 with _ do

12 throw Error "not an integer value".

13 end

14

15 assert(fact(3) == 6).

16 try

17 fact(3.0)

18 catch s do

19 io @println s. —— catch the error
end

N
I~

Structural Patterns

e Structural patterns means pattern
matching on structure in addition to
values.

e On the previous slide we saw one
instance of that:

(%integer,%integer) — match pairs of integer
values.

Structural Patterns

e The empty list [], single element list ‘[e],
and the head-tail pattern ‘[x|y] are also
structural patterns...

function halve
with []1 do
(L1511}
with [a] do
([al, 1)
with [a]|b|rest] do
let (llist,rlist) = halve(rest).
([al+1list, [b]+rlist)
end

Here[a|b|rest]isthesameas[a|[b]|rest]].

Structural Patterns

e \We can nest arbitrary structures as
patterns...

function merge

with ([],rlist) do
rlist

with (1list, []) do
1list

with ([a|llist], [b|rlist]) do
[al+merge(llist, [bl+rlist) if a < b

else [bl+merge([al+1list,rlist)

Patterns & Let

00 NO UL B WN B

Even though the ‘let’ statement looks like an assignment
statement it is actually a pattern-match statement of the form,

let <pattern> = <value>

It takes the value on the right and pattern-matches it against the
pattern on the left.

If the pattern contains variables, they will be instantiated in the
current namespace.

All patterns we have discussed so far are also valid as let
statement patterns

—— examples of the let statement

let x the variable x is the simplest pattern possible

let 1 the 1 on the left is the pattern, on the right the value
let x:%integer = 1. —— type patterns work here too

let (x,y) = (1,2). —— pattern instantiated x=1 and y=2

let ((a,b),(c,d)) = ((1,2),(3,4)). —— pair of pairs

let [a|b] = [1,2,3]. —— head-tail pattern match

The MergeSort

e Putting this all
together — the
MergeSort

O 00 NO UL B WN =

N
H

25
26
27
28
29
30
3l
32
33

AN

RNNNANY

AN

loa

fun

end

io

the mergesort
d system io.

ction mergesort
with [] do
[]
with [a] do
[a]
with 1 do
function halve
with []1 do
(r1,11)
with [a] do
([al, 1)
with [a|b|rest] do
let (llist,rlist) = halve(rest).
([al+1list, [bl+rlist)
end
function merge
with ([],rlist) do
rlist
with (1list, []) do
1list
with ([a|llist], [b|rlist]) do
[al+merge(1list, [b]+rlist) if a < b
else [b]+merge([al+1list,rlist)
end
let (x,y) = halve(l).
merge(mergesort(x),mergesort(y)).

@rintln(mergesort([3,2,1,0])).

Reading

e Asteroid User Guide
Functions

e https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#functions

Pattern Matching

e https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#pattern-matching

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Class Exercise

e Rewrite your solutions to the previous
class exercise in the multi-dispatch style
with pattern matching on the arguments.

Write a program that given a list will count the number of elements on the list.
o« E.g.[1,23]=>3,and[]=>0

Write a program that given a list of integer values will return a list where
each value on the list is double the value of the original value.

o« E.g.[1,2,3]=>[2,4,6],and[]=>]

Assignment

e Assignment #3 — see BrightSpace

