
Functional Programming

⚫ Functional programming is defined by:
⚫ Programs exclusively consist of recursive definitions of

functions

⚫ Everything is a value – no statements allowed
⚫ We do allow:

⚫ Function definition statements

⚫ Let statements for giving names to expressions

⚫ Return statements

⚫ Declarative approach to data via the use of pattern
matching.

⚫ Functions as first-class citizens
⚫ This gives rise to higher-order programming.

⚫ Functional Asteroid is called with ‘-F’ switch
⚫ asteroid –F <program>

The Factorial Revisited

⚫ Let’s start with something simple: Factorial

The problem is that if statements

are not supported in the functional

programming paradigm – they do

not compute a value!

The Factorial Revisited

⚫ Let’s rewrite this so everything is a value
We use a conditional expression

to compute the return value

Since functions are only allowed

to compute return values there is

no need for the explicit ‘return’.

SML

⚫ SML is one of the classic functional
languages next to Lisp.

⚫ A web-based implementation of SML is
available here,
⚫ https://sosml.org

Asteroid
SML

Lists: Listsum

⚫ Let’s see how functional programming
works with lists
⚫ Remember: no loops!
⚫ Everything has to be done with recursion

⚫ Program: Assume we are given a list of
integer values, sum all the integer values
on the list. E.g. [1,2,3] => 6

⚫ We need to use recursion.
⚫ Base case
⚫ Recursive step

Lists: Listsum

⚫ Notice the recursion in our solution,
⚫ Base case: [] => 0

⚫ Recursive step: pull the first element off the list and add it to
the result of the recursive call over the rest of the list,
⚫ hd(l)+listsum(tl(l))

⚫ hd – first element

⚫ tl – rest of list

SML & Listsum

Asteroid

SML

Class Exercise

⚫ Write a program that given a list will count
the number of elements on the list.
⚫ E.g. [1,2,3] => 3, and [] => 0

⚫ Write a program that given a list of integer
values will return a list where each value
on the list is double the value of the original
value.
⚫ E.g. [1,2,3] => [2,4,6], and [] => []

⚫ All programs need to be written in
functional Asteroid and need to be run with
the ‘-F’ flag in place.

Multi-Dispatch

⚫ Since most functional programs consist of

recursive functions all these functions will

have a top-level ‘if-else’ expression to deal

with the base vs recursive step.

⚫ That style of programming gets tiring very

fast and the code is not very readable.

⚫ The solution: Multi-Dispatch

⚫ Introduce one function body for each of the

steps.

Multi-Dispatch

Instead of this…

Do this…

Advantage: implicit testing

or pattern matching of the

function arguments!

Multi-Dispatch: SML

Instead of this…

Do this…

Multi-Dispatch

Instead of this…

Do this…

Notice that we can pattern

match on the structure of a

list: E.g. []

Pattern Matching

⚫ In programming values have structure
⚫ Lists are comprised of a sequence of elements

⚫ Pairs are made up of two ordered values: first
component and second component

⚫ Integers are single values without a decimal part

⚫ In pattern matching we state the expected structure
of a value as a pattern possibly with variables
⚫ If the pattern matches the expected value, then we say

that the pattern-match was successful, and variables will
be bound to parts of the value that they matched.

⚫ Example: (a,b) ← (1,2) with a=1 and b=2

⚫ Example: 1 ← 1

⚫ Example: x ← 3 with x=3

Head-Tail Pattern Matching

⚫ Instead of using ‘hd’ and ‘tl’ we can use pattern matching with the
head-tail pattern ‘[h | t]’.

h = 1

first element

of list

t = [2,3]

rest of list

without first

element

[h | t] ← [1,2,3]

Head-Tail Pattern Matching

⚫ In listsum the head-tail pattern takes care of
the analysis of the list!

Instead of this…

Do this…

Head-Tail Pattern Matching

⚫ The hallmark of this
multi-dispatch approach
is that the interpreter
does a lot of work for
you for free:
⚫ It executes the body that

matches the function
argument

⚫ If the head-tail pattern
matches the function
argument it instantiates
the first element in
variable h and the rest of
the list in variable t.

Head-Tail Pattern Matching

We went from this…

To this…

Head-Tail Pattern Matching:

SML

⚫ Head-Tail pattern matching is also

available in SML

Head-Tail Pattern Matching:

Python

⚫ Python also supports head-tail pattern

matching…

Functional Style Programming in

Python

⚫ A recursive program with pattern matching in Python

⚫ Functional programming is more explicit about the intentions
of a program

⚫ This is often called declarative programming

⚫ Functional and logic programming are considered declarative
programming paradigms

Imperative Programming Functional Programming

Wildcard Pattern

⚫ If we need to match a value but we don’t
care what that value is, we can use a
wildcard pattern ‘_’

Type Patterns

⚫ Type patterns match all the values of a particular type.
⚫ Type patterns are written with the ‘%’ followed by the type name.

⚫ A type pattern that matches all integer values is %integer.

⚫ Type patterns can appear anywhere where patterns can appear.

⚫ All built-in types are supported: %integer, %real, %string, %list, %tuple,
%boolean

⚫ User defined type patterns are %<name of the structure>.
⚫ For example if you created a structure called MyStruct then the associated type

pattern is %MyStruct and will only match objects instantiated from MyStruct

Conditional Patterns

⚫ We can limit the values that a variable can match by using a
special conditional pattern: <var> : <pattern>
⚫ x:%real – states that ‘x’ can only match floating point values.
⚫ q:(%integer,%integer) – states the ‘q’ can only match pairs of integer

values.

Structural Patterns

⚫ Structural patterns means pattern

matching on structure in addition to

values.

⚫ On the previous slide we saw one

instance of that:

⚫ (%integer,%integer) – match pairs of integer

values.

Structural Patterns

⚫ The empty list ‘[]’, single element list ‘[e]’,
and the head-tail pattern ‘[x|y]’ are also
structural patterns…

Here [a | b | rest] is the same as [a | [b | rest]].

Structural Patterns

⚫ We can nest arbitrary structures as

patterns…

Patterns & Let

⚫ Even though the ‘let’ statement looks like an assignment
statement it is actually a pattern-match statement of the form,
⚫ let <pattern> = <value>

⚫ It takes the value on the right and pattern-matches it against the
pattern on the left.

⚫ If the pattern contains variables, they will be instantiated in the
current namespace.

⚫ All patterns we have discussed so far are also valid as let
statement patterns

The MergeSort

⚫ Putting this all

together – the

MergeSort

Reading

⚫ Asteroid User Guide

⚫ Functions
⚫ https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#functions

⚫ Pattern Matching
⚫ https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#pattern-matching

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Assignment

⚫ Assignment #3 – see BrightSpace

	Slide 1: Functional Programming
	Slide 2: The Factorial Revisited
	Slide 3: The Factorial Revisited
	Slide 4: SML
	Slide 5: Lists: Listsum
	Slide 6: Lists: Listsum
	Slide 7: SML & Listsum
	Slide 8: Class Exercise
	Slide 9: Multi-Dispatch
	Slide 10: Multi-Dispatch
	Slide 11: Multi-Dispatch: SML
	Slide 12: Multi-Dispatch
	Slide 13: Pattern Matching
	Slide 14: Head-Tail Pattern Matching
	Slide 15: Head-Tail Pattern Matching
	Slide 16: Head-Tail Pattern Matching
	Slide 17: Head-Tail Pattern Matching
	Slide 18: Head-Tail Pattern Matching: SML
	Slide 19: Head-Tail Pattern Matching: Python
	Slide 20: Functional Style Programming in Python
	Slide 21: Wildcard Pattern
	Slide 22: Type Patterns
	Slide 23: Conditional Patterns
	Slide 24: Structural Patterns
	Slide 25: Structural Patterns
	Slide 26: Structural Patterns
	Slide 27: Patterns & Let
	Slide 28: The MergeSort
	Slide 29: Reading
	Slide 30: Assignment

