
Functional Programming

l Functional programming is defined by:
l Programs exclusively consist of recursive definitions of

functions
l Everything is a value – no statements allowed

l We do allow:
l Function definition statements 🙂
l Let statements for giving names to expressions
l Return statements

l Declarative approach to data via the use of pattern
matching.

l Functions as first-class citizens
l This gives rise to higher-order programming.

l Functional Asteroid is called with ‘-F’ switch
l asteroid –F <program>

The Factorial Revisited

l Let’s start with something simple: Factorial

The problem is that if statements
are not supported in the functional
programming paradigm – they do
not compute a value!

The Factorial Revisited

l Let’s rewrite this so everything is a value
We use a conditional expression
to compute the return value

Since functions are only allowed
to compute return values there is
no need for the explicit ‘return’.

SML

l SML is one of the classic functional
languages next to Lisp.

l A web-based implementation of SML is
available here,
l https://sosml.org

Asteroid
SML

Lists: Listsum

l Let’s see how functional programming
works with lists
l Remember: no loops!
l Everything has to be done with recursion

l Program: Assume we are given a list of
integer values, sum all the integer values
on the list. E.g. [1,2,3] => 6

l We need to use recursion.
l Base case
l Recursive step

Lists: Listsum

l Notice the recursion in our solution,
l Base case: [] => 0
l Recursive step: pull the first element off the list and add it to

the result of the recursive call over the rest of the list,
l hd(l)+listsum(tl(l))
l hd – first element
l tl – rest of list

SML & Listsum

Asteroid

SML

Class Exercise

l Write a program that given a list will count
the number of elements on the list.
l E.g. [1,2,3] => 3, and [] => 0

l Write a program that given a list of integer
values will return a list where each value
on the list is double the value of the original
value.
l E.g. [1,2,3] => [2,4,6], and [] => []

l All programs need to be written in
functional Asteroid and need to be run with
the ‘-F’ flag in place.

Multi-Dispatch

l Since most functional programs consist of
recursive functions all these functions will
have a top-level ‘if-else’ expression to deal
with the base vs recursive step.

l That style of programming gets tiring very
fast and the code is not very readable.

l The solution: Multi-Dispatch
l Introduce one function body for each of the

steps.

Multi-Dispatch

Instead of this…

Do this…

Advantage: implicit testing
or pattern matching of the
function arguments!

Multi-Dispatch: SML

Instead of this…

Do this…

Multi-Dispatch

Instead of this…

Do this…

Notice that we can pattern
match on the structure of a
list: E.g. []

Pattern Matching

l In programming values have structure
l Lists are comprised of a sequence of elements
l Pairs are made up of two ordered values: first

component and second component
l Integers are single values without a decimal part

l In pattern matching we state the expected structure
of a value as a pattern possibly with variables
l If the pattern matches the expected value, then we say

that the pattern-match was successful, and variables will
be bound to parts of the value that they matched.

l Example: (a,b) ← (1,2) with a=1 and b=2
l Example: 1 ← 1
l Example: x ← 3 with x=3

Head-Tail Pattern Matching

l Instead of using ‘hd’ and ‘tl’ we can use pattern matching with the
head-tail pattern ‘[h | t]’.

h = 1
first element
of list

t = [2,3]
rest of list
without first
element

[h | t] ← [1,2,3]

Head-Tail Pattern Matching

l In listsum the head-tail pattern takes care of
the analysis of the list!

Instead of this…

Do this…

Head-Tail Pattern Matching

l The hallmark of this
multi-dispatch approach
is that the interpreter
does a lot of work for
you for free:
l It executes the body that

matches the function
argument

l If the head-tail pattern
matches the function
argument it instantiates
the first element in
variable h and the rest of
the list in variable t.

Head-Tail Pattern Matching

We went from this…

To this…

Head-Tail Pattern Matching:
SML

l Head-Tail pattern matching is also
available in SML

Head-Tail Pattern Matching:
Python

l Python also supports head-tail pattern
matching…

Functional Style Programming in
Python

l A recursive program with pattern matching in Python
l Functional programming is more explicit about the intentions

of a program
l This is often called declarative programming
l Functional and logic programming are considered declarative

programming paradigms

Imperative Programming Functional Programming

Wildcard Pattern

l If we need to match a value but we don’t
care what that value is, we can use a
wildcard pattern ‘_’

Type Patterns

l Type patterns match all the values of a particular type.
l Type patterns are written with the ‘%’ followed by the type name.
l A type pattern that matches all integer values is %integer.
l Type patterns can appear anywhere where patterns can appear.
l All built-in types are supported: %integer, %real, %string, %list, %tuple,

%boolean
l User defined type patterns are %<name of the structure>.

l For example if you created a structure called MyStruct then the associated type
pattern is %MyStruct and will only match objects instantiated from MyStruct

Conditional Patterns
l We can limit the values that a variable can match by using a

special conditional pattern: <var> : <pattern>
l x:%real – states that ‘x’ can only match floating point values.
l q:(%integer,%integer) – states the ‘q’ can only match pairs of integer

values.

Structural Patterns

l Structural patterns means pattern
matching on structure in addition to
values.

l On the previous slide we saw one
instance of that:
l (%integer,%integer) – match pairs of integer

values.

Structural Patterns

l The empty list ‘[]’, single element list ‘[e]’,
and the head-tail pattern ‘[x|y]’ are also
structural patterns…

Here [a | b | rest] is the same as [a | [b | rest]].

Structural Patterns

l We can nest arbitrary structures as
patterns…

Patterns & Let

l Even though the ‘let’ statement looks like an assignment
statement it is actually a pattern-match statement of the form,
l let <pattern> = <value>

l It takes the value on the right and pattern-matches it against the
pattern on the left.

l If the pattern contains variables, they will be instantiated in the
current namespace.

l All patterns we have discussed so far are also valid as let
statement patterns

The MergeSort

l Putting this all
together – the
MergeSort

Reading

l Asteroid User Guide
l Functions

l https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#functions

l Pattern Matching
l https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html#pattern-matching

https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html
https://asteroid-lang.readthedocs.io/en/latest/User%20Guide.html

Class Exercise

l Rewrite your solutions to the previous
class exercise in the multi-dispatch style
with pattern matching on the arguments.
l Write a program that given a list will count the number of elements on the list.

l E.g. [1,2,3] => 3, and [] => 0
l Write a program that given a list of integer values will return a list where

each value on the list is double the value of the original value.
l E.g. [1,2,3] => [2,4,6], and [] => []

Assignment

l Assignment #3 – see BrightSpace

