Grammars and Semantics

- Programming languages are used to specify computations - that is, computations are the meaning/semantics of programs.

Reading

- Chap 3 in MPL

Grammars and Semantics

Consider the simple language of expressions:
$\mathrm{G}:\langle\operatorname{Exp}\rangle^{*}::=\langle\operatorname{Exp}\rangle+\langle\operatorname{Exp}\rangle$
$<$ Exp $>*<\operatorname{Exp}>$
a
b
c

When we write the sentence $a+b$ we can build the parse tree:

We can say that this parse tree represents the computation $\mathrm{a}+\mathrm{b}$.

If we let a and b be variables, then the parse tree gives us a procedure to compute $a+b$ by starting at the leaves of the tree: (1) lookup the values of the variables (2) pass the values up along the parse tree branches (3) use the values to compute the value of the + operator.

Grammars and Semantics

Now consider the sentence $a+b * c$, for this sentence we can construct two parse trees:

Even though both parse trees derive the same terminal string, the computations they represent are very different:
(1) left tree - first compute the product, then the addition
(2) right tree - first compute the addition, then the product

Since we had written the original sentence without parentheses the left parse tree represents the intended computation according to algebraic conventions.

However, from a machine point of view, there is no way of knowing which parse tree to pick...

Grammars and Semantics

...we need additional information: operator precedence
Operator precedence means that some operators bind tighter than others, e.g. * binds tighter than + .

We can build operator precedence right into our grammar ("precedence climbing"):

```
G': <AddExp>*::= <AddExp> + <AddExp>
    | <MulExp>
    <MulExp> ::= <MulExp> * <MulExp>
    | a | b | c
```

Let's try our problematic sentence $a+b * c$, only one parse tree is possible:

This is the only parse tree we can build, therefore, the grammar G' is not ambiguous.

Grammars and Semantics

However, our new grammar still has a problem, consider the sentence $a+b+c$; here we have two possible parse trees:

```
G': <AddExp> ::= <AddExp> + <AddExp>
    | <MulExp>
    <MulExp> ::= <MulExpr> * <MulExp>
    | a | b | c
```


Grammars and Semantics

- Again, our grammar is ambiguous because the computation specified by the sentence $a+b+c$ can be represented by two different parse trees.
- We need more information!
- There is one more algebraic property we have not yet explored associativity
- Most algebraic operators, including the + operator, are leftassociative.
- We can rewrite our grammar to take advantage of this additional information:

$$
\begin{aligned}
& \mathrm{G} ":\langle\mathrm{E}\rangle *::=\langle\mathrm{E}\rangle+\langle\mathrm{T}\rangle \mid\langle\mathrm{T}\rangle \\
& <\mathrm{T}\rangle \quad::=<\mathrm{T}\rangle *<\mathrm{P}\rangle|<\mathrm{P}\rangle \\
& \langle\mathrm{P}\rangle \quad::=\mathrm{a}|\mathrm{~b}| \mathrm{c}
\end{aligned}
$$

Grammars and Semantics

Let's try our sentence $a+b+c$ again with grammar G^{\prime} ':

$$
\begin{aligned}
& \mathrm{G} ":\langle\mathrm{E}\rangle *::=\langle\mathrm{E}\rangle+\langle\mathrm{T}\rangle \mid\langle\mathrm{T}\rangle \\
& \langle\mathrm{T}\rangle \quad::=<\mathrm{T}\rangle *<\mathrm{P}\rangle|<\mathrm{P}\rangle \\
& \langle\mathrm{P}\rangle \quad::=\mathrm{a}|\mathrm{~b}| \mathrm{c}
\end{aligned}
$$

There is no other way to derive this string from the grammar and thus the grammar is not ambiguous.

Take Away

- Grammars can be ambiguous in the sense that a derived string can have multiple distinct parse trees.
- By taking additional information such as associativity and precedence about the operators of a language into account we can construct grammars that are not ambiguous.

Grammars and Semantics

Given the following grammar,

$$
\begin{aligned}
& \mathrm{G} ":\langle\mathrm{E}\rangle *::=\langle\mathrm{E}\rangle+\langle\mathrm{T}\rangle \mid\langle\mathrm{T}\rangle \\
& <\mathrm{T}\rangle \quad::=<\mathrm{T}\rangle *<\mathrm{P}\rangle|<\mathrm{P}\rangle \\
& \langle\mathrm{P}\rangle \quad::=\mathrm{a}|\mathrm{~b}| \mathrm{c}
\end{aligned}
$$

Add productions to the grammar that define the right-associative operator = at a lower precedence than any of the other operators.

This new operator should allow you to write expressions such as

$$
\begin{aligned}
& a=b \\
& a=b=c \\
& a=b=b+c
\end{aligned}
$$

Grammars and Semantics

a) Show that the following grammar is ambiguous.

$$
\begin{aligned}
G:<S> & := \\
& \mid<S><S> \\
& (<S>) \\
& ()
\end{aligned}
$$

b) Rewrite the above grammar so that it is no longer ambiguous.

Class Exercise

- Let $L(G)$ be the set of all strings that start with an a followed by zero or more b's and end with the character c. Design grammar G.
- Given the following grammar Q:

- What are some of the strings in $L(Q)$?
- Show that Q is ambiguous.

Assignment

- Assignment \#7

