
Grammars and Semantics

l Programming languages are used to
specify computations – that is,
computations are the meaning/semantics
of programs.

Reading

l Chap 3 in MPL

Grammars and Semantics

G: <Exp>* ::= <Exp> + <Exp>
| <Exp> * <Exp>
| a
| b
| c

Consider the simple language of expressions:

When we write the sentence a + b we can build the parse tree:

<Exp>*

<Exp> <Exp>+

a b

We can say that this parse tree
represents the computation a + b.

If we let a and b be variables, then the parse tree gives us a procedure to compute a + b by
starting at the leaves of the tree: (1) lookup the values of the variables (2) pass the values up
along the parse tree branches (3) use the values to compute the value of the + operator.

Grammars and Semantics
Now consider the sentence a + b * c, for this sentence we can construct two parse trees:

<Exp>*

<Exp> +

a

<Exp>

<Exp> <Exp>*

b c

<Exp>*

<Exp>*

c

<Exp>

<Exp><Exp> +

ba

The grammar G is
ambiguous

Even though both parse trees derive the same terminal string, the computations they represent are
very different:

(1) left tree – first compute the product, then the addition
(2) right tree – first compute the addition, then the product

Since we had written the original sentence without parentheses the left parse tree represents the
intended computation according to algebraic conventions.

However, from a machine point of view, there is no way of knowing which parse tree to pick…

Grammars and Semantics
…we need additional information: operator precedence

Operator precedence means that some operators bind tighter than others,
e.g. * binds tighter than +.

We can build operator precedence right into our grammar (“precedence climbing”):

G’: <AddExp>*::= <AddExp> + <AddExp>
| <MulExp>

<MulExp> ::= <MulExp> * <MulExp>
| a | b | c

Let’s try our problematic sentence a + b * c, only one parse tree is possible:

<AddExp>*

<AddExp> +

<MulExp> <MulExp>

<MulExp> <MulExp>*

b c

<AddExp>

a

This is the only parse
tree we can build,
therefore, the
grammar G’ is not
ambiguous.

Grammars and Semantics
However, our new grammar still has a problem, consider the sentence a+b+c; here we have
two possible parse trees:

The grammar G’ is
ambiguous

G’: <AddExp> ::= <AddExp> + <AddExp>
| <MulExp>

<MulExp> ::= <MulExpr> * <MulExp>
| a | b | c

<AddExp>*

<AddExp> +

<MulExp>

<AddExp>

<AddExp> <AddExp>+

a <MulExp>

b

<MulExp>

c

<MulExp>

<AddExp>*

<AddExp>+

<MulExp>

<AddExp>

<AddExp><AddExp> +

<MulExp>

ba

c

Grammars and Semantics

l Again, our grammar is ambiguous because the computation
specified by the sentence a+b+c can be represented by two
different parse trees.

l We need more information!
l There is one more algebraic property we have not yet explored –

associativity
l Most algebraic operators, including the + operator, are left-

associative.
l We can rewrite our grammar to take advantage of this additional

information:

G”: <E>* ::= <E> + <T> | <T>
<T> ::= <T> * <P> | <P>
<P> ::= a | b | c

Grammars and Semantics
Let’s try our sentence a+b+c again with grammar G’’:

G”: <E>* ::= <E> + <T> | <T>
<T> ::= <T> * <P> | <P>
<P> ::= a | b | c

<P>

<E>*

<T>+

<P>

<E>

<T><E> +

<P>

b

a

c<T>

There is no other
way to derive this
string from the grammar
and thus the grammar
is not ambiguous.

Take Away

l Grammars can be ambiguous in the
sense that a derived string can have
multiple distinct parse trees.

l By taking additional information such as
associativity and precedence about the
operators of a language into account we
can construct grammars that are not
ambiguous.

Grammars and Semantics

G”: <E>* ::= <E> + <T> | <T>
<T> ::= <T> * <P> | <P>
<P> ::= a | b | c

Given the following grammar,

Add productions to the grammar that define the right-associative
operator = at a lower precedence than any of the other operators.

This new operator should allow you to write expressions such as

a = b
a = b = c
a = b = b + c

Grammars and Semantics
a) Show that the following grammar is ambiguous.

G: <S> ::= <S> <S>
| (<S>)
| ()

b) Rewrite the above grammar so that it is no longer ambiguous.

Class Exercise

l Let L(G) be the set of all strings that start
with an a followed by zero or more b’s
and end with the character c. Design
grammar G.

l Given the following grammar Q:
Q: <A>* ::= <A> @ <A>

| *
l What are some of the strings in L(Q)?
l Show that Q is ambiguous.

Assignment

l Assignment #7

