Types in Asteroid

e Asteroid is dynamically type checked
Infers types of variables at runtime
No type hierarchy, explicit type conversions!

Be careful, incorrect type conversions can lead
to information loss!

ast> let 1 =1 + 2.5.

error: found 'integer + real' expected 'real + real'
ast> let i = toreal(l) + 2.5.

ast> let i = 1. ast> gettype(i)

ast> gettype(i) real

integer ast> 1 . .
ast> let i = 1.0. 3.6 ast> let i = 1 + tointeger(2.5).

ast> gettype(i) ast> [ast> gettype(i)
real integer

! 3 <

ast> ||

Types in Asteroid

e Lists:

Lists in Asteroid are polymorphic in the sense that
they do not enforce any kind of type restrictions on
their elements.

This is similar to Python and very different from
languages like C++ where this kind of
polymorphism can only be achieved via class
iInheritance.

The following is legal in Asteroid,

ast> let 1 = [1,2.5,"three"].
ast> gettype(l)

list

ast> 1

[1,2.5,three]

ast> ||

Types in Asteroid

e Tuples:
One way to think about tuples is as “fixed length lists” that are
immutable, i.e.

e Once you have decided on the number of components of a tuple you
cannot change it.

o Tuples with different number of components are incompatible.
e You cannot change the contents of a tuple.

™

ast> let (x,y) = (1,2,3).
error: pattern match failed: term and pattern lists/tuples are not the same length
ast> |

Asteroid 2.0.1

(c) University of Rhode Island

Type "help" for additional information

ast> let t = (1,2).

ast> let t@O = 2.

error: term '(1,2)' is not a mutable structure
ast> [

Types in Asteroid

e Structures

Asteroid uses name equivalence when computing the
compatibility of two constructed types

structure Typel with

data a.

data b.
.... end
ast> structure Type2 with

data a.

data b.
.... end
ast> let q:%Type2 = Typel(1,2).
error: pattern match failed: conditional pattern match failed
ast> let q:%Typel = Typel(1,2).
ast>

