
Types

A Type is a Set of Values

Consider the C statement:

int n = 3;

Here we constrain n to take on any value from the set of all integer values.

Reading: MPL Chap 6

Types
Def: A type is a set of values.

Def: A primitive type is a type that is built into the language, e.g., integer, string.

Def: A constructed type is a user defined type, e.g., any type introduced by the user.
In Asteroid this is done through the ‘structure’ statement.

Example: C, primitive type

float q;

type float Þ set of all
possible floating point values

q is of type float, only
a value that is a member
of the set of all floating point
values can be assigned to q.

Types

Example: Java, constructed type

class Rectangle { int xdim; int ydim; };

Rectangle r = new Rectangle();

Now the variable r only accepts values that are members of type Rectangle;
F object instantiations of class Rectangle.

Types

Example: Asteroid, constructed type

an element of
type Rectangle.

Types

Example: C, constructed type

int a[3];

the variable a will accept values
which are arrays of 3 integers. e.g.: int a[3] = {1,2,3};

int a[3] = {7,24,9}

In statically typed languages arrays are also considered ‘constructed types’

That is, ‘int a[3]’ defines the set of all integer arrays of size three.

Subtypes

Def: a subtype is a subset of the elements of a type.

Example: C

Short is a subtype of int: short < int

Observations:
(1) converting a value of a subtype to a values of the super-type is

called widening type conversion. (safe)
(2) converting a value of a supertype to a value of a subtype is

called narrowing type conversion. (not safe)

Example: C, partial type hierarchy

char < short < int < float < double

Subtypes give rise to type hierarchies and
type hierarchies allow for automatic type
coercion – widening conversions!

The notation A < B means
A is a subtype of B.

Subtypes

l A convenient way to
visualize subtypes is using
Venn diagrams

l Consider,
short < int

l It is easy to see that the
shorts are a subset of the
integer values

l The green arrow
represents a widening type
conversion is always safe

l The red arrow represents
a narrowing type
conversion and is never
safe

int

short

Why do we use types?

l Types allow the computer/language system to
assist the developer write better programs.
Type mismatches in a program usually
indicate some sort of programming error.
l Static type checking – check the types of all

statements and expressions at compile time.
l Dynamic type checking – check the types at

runtime.

Type Equivalence

l Fundamental to type checking is the
notion of type equivalence:
l Figuring out whether two type description

are equivalent or not
l This is especially important for constructed

types like class/struct objects.

Type Equivalence
I. Name (nominal) Equivalence – two objects are of the same type if and only

if they share the same type name.

Example: Rust – constructed type

Error; even though the types look
the same, their names are different,
therefore, Rust will not compile.

FRust uses name equivalence

Type Equivalence
II. Structural Equivalence – two objects are of the same type if and only if

they share the same type structure.

Example: Haskell

Even though the type names are different,
Haskell correctly recognizes this
statement.

F Haskell uses structural equivalence.

Type Inference

l Type inference refers to the automatic
detection of the data type of an
expression in a programming language
and to make sure that all expressions
and statements are properly typed.
l We often refer to this as “type checking” a

program
l To see how this might work let’s work

through an example.

Type Inference

l Assume we have the following statements
in a programming language like C:

l We want to make sure that all the
assignments are legal.

l We will use the type notation ‘3.integer’
indicating that this syntactic unit has the
type integer.

int x = 3;
int y = (2 * x);

Type Inference

l We start at the primitives on the right
side of the assignments of the first
statement and then stepping through all
the remaining statements

Type Inference

int x = 3;
int y = (2 * x);

Type Inference

int x = 3.integer;
int y = (2 * x);

Start with the primitives on the right-hand side for the first statement

Type Inference

int x = 3.integer;
int y = (2 * x);

If we have evaluated a top-level entity, then check against left-hand side.
If it type checks accept it, if not reject it. If you not at top-level keep inferencing.

✓

Type Inference

int x = 3.integer;
int y = (2.integer * x.integer);

Process the next statement

Type Inference

int x = 3.integer;
int y = (2.integer * x.integer).integer;

If you not at top-level keep inferencing.

Type Inference

int x = 3.integer;
int y = (2.integer * x.integer).integer;

If we have evaluated a top-level entity, then check against left-hand side.
If it type checks accept it, if not reject it.

✓

Accept: we can assign an integer value to an integer variable.

Type Inference

l Let’s try a program with a bug in it. In C we
have the hierarchy, short < int

int x = 3;
short y = (2 * x);

Type Inference

int x = 3.integer;
short y = (2* x);

Type Inference

int x = 3.integer;
short y = (2 * x);

If we have evaluated a top-level entity, then check against left-hand side.
If it type checks accept it, if not reject it. If you not at top-level keep inferencing.

✓

Type Inference

int x = 3.integer;
short y = (2.integer * x.integer);

Type Inference

int x = 3.integer;
short y = (2.integer * x.integer).integer;

Type Inference

int x = 3.integer;
short y = (2.integer * x.integer).integer; ✗

Reject: cannot assign a member of a supertype to a subtype.

Example: To see this check out the repl at
https://replit.com/@lutzhamel/C-types#int.c

https://replit.com/@lutzhamel/C-types

Type Inferencing in Asteroid

l Type inferencing for assignment statements
works a little bit different in Asteroid:
l The types must match exactly, no type

conversion is supported during assignments
l This is because Asteroid does not support a

type hierarchy.

Exercises

l Let Q be the set of all negative integer values less
than zero,

Q = {-1,-2,-3,-4,-5,-6,-7,-8,-9,…}
l Let P be the set of all negative integer values evenly

divisible by two,
P = {-2,-4,-6,-8,…}

l Then, is the following statement type safe assuming
that x is declared as type Q and y is declared as type
P?

x := (y+(-1))

where -1 is a member of type Q.

Hint: A type is a set of values!

Exercise

l Answer:
l First, we have to determine if there is a

subtype-supertype relationship between Q
and P. There is, because P is a subset of Q,

P < Q
l Second, now we can do our type

inferencing on the statement
x := (y+(-1))

Exercise

x := (y.P+(-1).Q)

Start with primitives on rhs.

Exercise

x := (y.Q+(-1).Q)

Both operands of + have to have the same type. We know that P < Q, therefore
we can replace P with Q on the left operand to +.

Exercise

x := (y.Q+(-1).Q).Q

If the input type to + is Q then the output type is also Q

Exercise

x.Q := (y.Q+(-1).Q).Q

The variable x was declared as type Q. Therefore, we have an assignment
of a Q value to a Q variable which is always safe.

✓

Exercise

l What about the assignment,
y := (-1)

is it type safe?

Exercise

y := (-1).Q

Start with primitives on rhs

Exercise

y.P := (-1).Q

Look at type on lhs. NOT type safe because P < Q. You cannot store a value
from a supertype into a variable of a subtype.

✘

Types & Objects

l In any OO language class definitions
create new types

l Objects are the values in those types
l In OO languages that support

inheritance, inheritance creates a
subtype-supertype relationship in the
class hierarchy

Types & Objects
Example: Java

class Cup { ... };
class CoffeeCup extends Cup { ... };
class TeaCup extends Cup { ... };

Which ones of the following statements
are safe and which ones are not?

1. Cup x = new Cup();
2. Cup y = new CoffeeCup();
3. TeaCup z = new Cup();
4. TeaCup t = new TeaCup();

Cup c = t;

Cup

Note: Type coercion in type hierarchies gives
rise to polymorphic programming in OO - objects
can appear in different type contexts. More on that later.

CoffeeCup

TeaCup

CoffeeCup < Cup
TeaCup < Cup

Object-Oriented Programming

l Classic OO languages are based around
inheritance hierarchies.

l The main distinguishing feature between
them is whether they support single or
multiple inheritance.
l C++ and Python support multiple inheritance
l Java supports single inheritance

l There are three main problems with
inheritance-based OO languages.

Problem #1

l Bloated method inheritance – that is,
each child in an inheritance hierarchy will
inherit ALL of the methods of its
ancestors.

l This is true for both single and multiple
inheritance.

Problem #2

l The diamond problem – sometimes
referred to as the ‘deadly diamond of
death’

l This occurs in languages with multiple
inheritance

The Diamond Problem

l Briefly:
l An ambiguity that arises when

two classes B and C inherit
from A, and class D inherits
from both B and C.

l If there is a method in A that B
and C have overridden, and D
does not override it, then
which version of the method
does D inherit: that of B, or
that of C?

l That is: D.foo() – which foo()
should be called?

l This gets really problematic in
deep inheritance structures.

foo()

foo() foo()

The Diamond Problem

l Different languages deal with the diamond problem
in different ways
l C++ uses a fully qualified syntax
l Python uses a class hierarchy linearization algorithm

(C3 linearization or MRO) to resolve ambiguities

MRO: Method Resolution Order

Problem #3

l A third problem that frequently arises in
inheritance-based OO languages are
rigid class structures
l This usually manifests itself in class

hierarchies that are difficult to evolve in face
of changing software requirements

Object-Based Programming

l A response to these problems is that
recent languages no longer support
inheritance and are object-based

l Of the three new big languages, Rust,
Go, and Swift, only Swift supports a full
OO model.

l Asteroid is object-based, that is, it
supports objects but not inheritance.

Take Away

l Types are sets of values, typically with a common
representation and common set of operations.

l Types in programming languages allows
compilers and interpreters to check for
consistency in your programs.

l Inconsistencies/bugs usually show up a type
mismatches.

l Type equivalence between constructed types can
be established in one of two ways, name
equivalence or structural equivalence.

l Class hierarchies in OO languages give rise to
subtype-supertype relationships due to
inheritance.

Exercise

l Let P={1,2,3,4,5} and Q={2,4}
l Let x:P and y:Q, determine if the following

are legal:
1. x = (1+1) with 1.P
2. x = (4+2) with 4.P and 2.P
3. x = (1+y) with 1.P

Assignments

l Reading: MPL Chap 6
l Assignment #2 – See BrightSpace

