Asteroid Basics

https://asteroid-lang.readthedocs.io/



https://asteroid-lang.readthedocs.io/

Imperative Asteroid

e The "Hello World” program...

Load system module

\ Sentence terminator

load system io. e

io @rintln("Hello World!").

IN002/hello.ast




lteration

e ‘while’, ‘for’, ‘loop’ constructs are all supported

—— compute the factorial

load system io. ‘////////

Function argument

function fact with n do

let val = 1. Ilteration
while n > 1 do <«
let val = valxn.
let n = n-1. \ Assignment
end
return val. _ Function Call
_— Type conversion \

let x = tointeger(io @input("Enter a positive integer: ")).
io @rintln ("The factorial of " + tostring(x) + " is " + tostring(fact x)).

In002/fact-iter.ast



Function Calls

e In Asteroid function calls are constructed by
juxta positioning a function with a value, e.qg.

fact 3.
no parentheses necessary! But the traditional
fact(3).

also works.




Data

Structures

e Built-in lists
[1,2,3]

e Built-in tuples
(X,y)

e Element access

a@i

—— the bubble sort
load system io.

function bubblesort with 1 do

loop
let swapped = false. Element access
for i in 0 to len(1)-2 do /
if 1@(i+l) <= 1@i do
let (1@i,1@(i+1)) = (l@(i+1),lei).
let swapped = true.
end
end
if not swapped do
break.
end
end

return 1.
end

et k = [6:;5;3,1,8,7,2:4]:
io @println("unsorted array: "+tostring(k)).
io @println("sorted array: "+tostring(bubblesort k)).

In002/bubble.ast



Structures & Objects

e Asteroid is object-based
e Bundle operations with data

e No object-inheritance
Construct new objects from other objects via
object composition

e New languages with a full object-oriented
type system are waning
Of the three “big” new languages (Rust, Go,

Swift) only Swift supports OO with object-
iInheritance, the others are object-based.




Structures

—— rectangle structure
load system io.

structure Rectangle with
data xdim.

data ydim. Member access

end / Default Constructor
let r = Rectangle(4,2). ‘/////////////\\\\\\\\\x

io @println ("Rectangle with x="+tostring(r@xdim)+" and y="+tostring(r@ydim)).

e Structures consist of ‘data’ fields and are associated with a
default constructor

e Member access is via the ‘@’ operator

INn002/rect.ast



—— rectangle structure
load system io.

structure Rectangle with
data xdim.
data ydim.

—— member function IN002/rect-00.
function area with () do

return this@xdim * this@ydim.

end V&\\\\V///ﬂ
end
O

bject member access

let r = Rectangle(4,2).

let x = tostring(r@xdim). Member function call

let y = tostring(r@ydim). ,////

let area = tostring(r@area()).

io @rintln ("The area of rectangle <" + x + "," +y + "> is " + area).

e Member functions

e Object identity is given with the ‘this’ keyword

e Member functions are called on objects with the ‘@’ operator
E.g., r@area()



Structures: Rust & Go

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}

type rect struct {
width int
height int

}

func (r xrect) area() int {
return r.width x r.height

}




Asteroid Exercises

e Ex1: Write an Asteroid program that prints out the
iIntegers 10 through 1.

e Ex2: Write an Asteroid program that has a structure
for the type ‘Circle’ that holds the coordinates of the
center of a circle and its radius.

Your program should instantiate a number of different
circle objects and print them out using ‘io @printin’.

Add a member function to your Circle structure that
computes the circumference of the given circle using
2*pi*r. Your program should instantiate a number of
circles and print out their circumference.




Types in Asteroid

e Asteroid has a set of primitive data types:
integer
real
string
boolean
e Asteroid does not order these data types
into a type hierarchy like Java, Python, or

C. Inthat it closely aligns itself with
languages like Rust and ML.

(more on type hierarchies later)




Types in Asteroid

e Asteroid has two more built-in data types:
list
tuple

e These are structured data types in that they
can contain entities of other data types.

lutz$ asteroid

Asteroid 2.0.1

(c) University of Rhode Island

Type "help" for additional information
ast> let a = [1,2,3].

ast> let s = ["hello", "world"].

asite I Asteroid 2.0.1
(c) University of Rhode Island
Type "help" for additional information
ast> structure Person with
data first_name.
data last_name.
.. end
ast> let people = [Person("Joe","Smith"),Person("Helen","Jackson")].
ast>




Types in Asteroid

e Using the ‘structure’ keyword Asteroid also
supports user defined types.

The name of the structure becomes a new type
available in the program.

-— user defined types
structure Person with
data name.
data profession.
end

let p:%Person = Person("Fred","Carpenter").

N

Type Pattern

In002/person.ast



Types in Asteroid

e Finally, Asteroid supports one more type,
namely the none type.

The none type has a constant named
conveniently 'none’.

The empty pair of parentheses () can be
used as a short-hand for the constant none.




Running Asteroid

e Install the interpreter on your machine
See https://asteroid-lang.org

Note: Windows users will have to make sure
that the pyreadline3 module is installed on
their machine

e https://pypi.org/project/pyreadline3/



https://asteroid-lang.org/
https://pypi.org/project/pyreadline3/

Assignments

e Reading: MPL Chap 6
e Do Assignment #1 — see BrightSpace




