
Asteroid Basics

https://asteroid-lang.readthedocs.io/

https://asteroid-lang.readthedocs.io/

Imperative Asteroid

l The “Hello World” program…

Load system module
Sentence terminator

ln002/hello.ast

Iteration

l ‘while’, ‘for’, ‘loop’ constructs are all supported

Function argument

Iteration

Assignment

Type conversion
Function Call

ln002/fact-iter.ast

Function Calls

l In Asteroid function calls are constructed by
juxta positioning a function with a value, e.g.

fact 3.

no parentheses necessary! But the traditional

fact(3).

also works.

Data
Structures

l Built-in lists
l [1,2,3]

l Built-in tuples
l (x,y)

l Element access
l a@i

Element access

ln002/bubble.ast

Structures & Objects

l Asteroid is object-based
l Bundle operations with data
l No object-inheritance

l Construct new objects from other objects via
object composition

l New languages with a full object-oriented
type system are waning
l Of the three “big” new languages (Rust, Go,

Swift) only Swift supports OO with object-
inheritance, the others are object-based.

Structures

l Structures consist of ‘data’ fields and are associated with a
default constructor

l Member access is via the ‘@’ operator

ln002/rect.ast

Default Constructor
Member access

Structures

l Member functions
l Object identity is given with the ‘this’ keyword
l Member functions are called on objects with the ‘@’ operator

l E.g., r@area()

Object member access

Member function call

ln002/rect-OO.ast

Structures: Rust & Go

Rust

Go

Asteroid Exercises

l Ex1: Write an Asteroid program that prints out the
integers 10 through 1.

l Ex2: Write an Asteroid program that has a structure
for the type ‘Circle’ that holds the coordinates of the
center of a circle and its radius.
1. Your program should instantiate a number of different

circle objects and print them out using ‘io @println’.
2. Add a member function to your Circle structure that

computes the circumference of the given circle using
2*pi*r. Your program should instantiate a number of
circles and print out their circumference.

Types in Asteroid

l Asteroid has a set of primitive data types:
l integer
l real
l string
l boolean

l Asteroid does not order these data types
into a type hierarchy like Java, Python, or
C. In that it closely aligns itself with
languages like Rust and ML.

(more on type hierarchies later)

Types in Asteroid

l Asteroid has two more built-in data types:
l list
l tuple

l These are structured data types in that they
can contain entities of other data types.

Asteroid 2.0.1
(c) University of Rhode Island
Type "help" for additional information
ast> structure Person with
.... data first_name.
.... data last_name.
.... end
ast> let people = [Person("Joe","Smith"),Person("Helen","Jackson")].
ast>

Types in Asteroid

l Using the ‘structure’ keyword Asteroid also
supports user defined types.
l The name of the structure becomes a new type

available in the program.

Type Pattern

ln002/person.ast

Types in Asteroid

l Finally, Asteroid supports one more type,
namely the none type.
l The none type has a constant named

conveniently ’none’.
l The empty pair of parentheses () can be

used as a short-hand for the constant none.

Running Asteroid

l Install the interpreter on your machine
l See https://asteroid-lang.org

l Note: Windows users will have to make sure
that the pyreadline3 module is installed on
their machine
l https://pypi.org/project/pyreadline3/

https://asteroid-lang.org/
https://pypi.org/project/pyreadline3/

Assignments

l Reading: MPL Chap 6
l Do Assignment #1 – see BrightSpace

