
Welcome - CSC 301

CSC 301- Fundamentals of Programming Languages
● Instructor: Dr. Lutz Hamel
● Email: lutzhamel@uri.edu
● Book: “Modern Programming Languages”, any edition

● (for more details see BrightSpace)

mailto:lutzhamel@uri.edu

Why Study Programming Languages?

● Amazing variety
● ~2300 different programming languages discussed on online forums*.

● “Strange” controversies
● Should a programming language have a ‘goto’ statement?
● Should an OO language support inheritance?
● Terminology: argument vs. actual parameter.

● Many connections
● Programming languages touch upon virtually all areas of computer

science: from the mathematical theory of formal languages and
automata to the implementation of operating systems.

● Intriguing evolution
● Programming languages change!

● New ideas and experiences trigger new languages.
● New languages trigger new ideas, etc.

*Source: Webber, Modern Programming Languages: A Practical Introduction.

Reading

● Chap 1 in “Modern Programming
Languages” (MPL)

Programming Language Classes

There are many different programming
language classes, but three classes or
paradigms stand out:
● Imperative Languages
● Functional Languages
● Logic/Rule Based Languages

What Happened to OOP?

● Object-orientation is really a property of the type
system of a language.

● OO features have traditionally been added to
imperative languages (C++, Java, Python)

● Object-oriented features have also been added
to:
● Functional programming languages like Lisp (CLOS)
● Logic languages like Prolog (Logtalk)

● Here we look at object-based programming within
the multi-paradigm language Asteroid

Meet Our Languages

● Asteroid – An object-based, imperative,
and functional programming language
being developed right here at URI
● https://asteroid-lang.org

● Prolog – A logic programming language,
most famously used in IBM Watson
● The IBM Watson knowledge base was filled with 200 million pages of information,

including the entire Wikipedia website. To parse the questions into a form that IBM
Watson could understand, the IBM team used Prolog to parse natural-language questions
into new facts that could be used in the IBM Watson pipeline. In 2011, the system
competed in the game Jeopardy! and defeated former winners of the game.

● https://www.swi-prolog.com

Source: developer.ibm.com/articles/cc-languages-artificial-intelligence/

Example Computation

● Recursive definition of the factorial
operator

for all x > 0.
€

x!=
1 if x =1,
x(x −1)! otherwise.
⎧
⎨
⎩

Imperative Languages

● Hallmarks: assignment and iteration
● Examples: C, FORTRAN, Imperative sublanguage of

Asteroid
● Example Program: factorial program in (imperative) Asteroid

Imperative Languages

Observations:
● The program text determines the order of

execution of the statements.
● We have the notion of a ‘current value’ of a

variable – accessible state of variable.
This is not always true in other languages.

Imperative Asteroid

ln001/fact-iter.ast

State variables

Functional Languages

● Hallmarks: recursion, multi-dispatch, single valued variables.
● Examples: ML, Lisp, Haskell, Functional sublanguage of Asteroid
● Example Program: factorial program in (functional) Asteroid

recursion

multi-dispatch n is single valued
variable.

Functional Languages

Observations:
● No explicit assignments necessary

● we will allow them later for convenience sake but
they will introduce only single valued variables

● The name stems from the fact that programs
consist of recursive definitions of functions.

Functional Asteroid

ln001/fact-rec.ast

Logic Programming Languages

● Hallmarks: programs consist of rules that specify the
problem solution.

● Examples: Prolog, Maude, Isabelle
● Example Program: factorial program written in Prolog

rules

fact(in,out)

‘and’

Logic Programming Languages

Observations:
● Rules do not appear in the order of

execution in the program text.
● No specific order of execution is given –

rules ‘fire’ when necessary.

Prolog

Object-Based Languages

● Hallmarks: bundle data with the allowed operations ☞ Objects
● Asteroid takes an interesting approach here – structures with functions.

ln001/rect.ast

Programming Language Classes

General Observations:
● Programming languages guide programmers

towards a particular programming style:
● Imperative → iteration/assignment
● Functional → mathematical functions
● OO → objects
● Logic → rules

● Programming itself guides the developer towards
new language ideas:
● Recursion was introduced by John McCarthy in the 1950’s

with the programming language Lisp to solve problems in
AI.

● Classes and objects were developed by Nygaard and Dahl
in the 1960’s and 70’s for the language Simula in order to
solve problem in simulations.

Take Away

● There exist many programming languages
today (> 2000)

● In order to understand the similarities and
differences ⇒ sort into classes
● Imperative

● assignment and iteration
● Functional

● Recursion, single valued variables
● Logic/rule based

● programs consist of rules
● Object-based

● bundle data with the allowed operations

Reading & Assignments

● Reading: Modern Programming
Languages (MPL) Chap 1.

● Install Asteroid
● https://asteroid-lang.readthedocs.io

● Assignment #0: Download & Read
Syllabus – upload a copy of it into BS

