Welcome - CSC 301

MODERN modern

PROGRAMMING LANGUAGES: programmlng
A PRACTICAL INTRODUCTION languages 4

Adam Brooks Webber

a practical introduction

Adam Brooks Webber
T e

CSC 301- Fundamentals of Programming Languages

e |nstructor: Dr. Lutz Hamel

e Email: luizhamel@uri.edu

e Book: “Modern Programming Languages”, any edition

o (for more details see BrightSpace)


mailto:lutzhamel@uri.edu

Why Study Programming Languages?

Amazing variety
~2300 different programming languages discussed on online forums™.

“Strange” controversies
Should a programming language have a ‘goto’ statement?
Should an OO language support inheritance?
Terminology: argument vs. actual parameter.

Many connections
Programming languages touch upon virtually all areas of computer
science: from the mathematical theory of formal languages and
automata to the implementation of operating systems.

Intrlgumg evolution
rog?\lrammlng languages change!
« New ideas and experiences trigger new languages.
« New languages trigger new ideas, etc.

*Source: Webber, Modern Programming Languages: A Practical Introduction.



Reading

e Chap 1 in “"Modern Programming
Languages” (MPL)




Programming Language Classes

There are many different programming
language classes, but three classes or

paradigms stand out:
mperative Languages
-unctional Languages
_ogic/Rule Based Languages




What Happened to OOP?

Object-orientation is really a property of the type
system of a language.

OO features have traditionally been added to
imperative languages (C++, Java, Python)
Object-oriented features have also been added

to:
Functional programming languages like Lisp (CLOS)
Logic languages like Prolog (Logtalk)

Here we look at object-based programming within
the multi-paradigm language Asteroid




Meet Our Languages

o Asteroid — An object-based, imperative,
and functional programming language
being developed right here at URI

https://asteroid-lang.org
e Prolog — Alogic programming language,
most famously used in IBM Watson

The IBM Watson knowledge base was filled with 200 million pages of information,
including the entire Wikipedia website. To parse the questions into a form that IBM
Watson could understand, the IBM team used Prolog to parse natural-language questions
into new facts that could be used in the IBM Watson pipeline. In 2011, the system
competed in the game Jeopardy! and defeated former winners of the game.
https://www.swi-prolog.com

Source: developer.ibm.com/articles/cc-languages-artificial-intelligence/



Example Computation

o Recursive definition of the factorial
operator

1ifx=1,
X(x-1)! otherwise.

for all x > 0.




Imperative Languages

e Hallmarks: assignment and iteration

o Examples: C, FORTRAN, Imperative sublanguage of
Asteroid

o Example Program: factorial program in (imperative) Asteroid

function fact with n do
let val = 1.
while n > 1 do
let val = valxn.
let n = n-1.
end
return val.
end




Imperative Languages

Observations:
The program text determines the order of
execution of the statements.
We have the notion of a ‘current value’ of a
variable — accessible state of variable.

This is not always true in other languages.




Imperative Asteroid

—— compute the factorial
load system io.

function fact with n do
let val = 1.

while n > 1 do State variables
let val valii;/:::::::::::::::;7’
let n = n-1.

end
return val.
end

let x = tointeger(io @input("Enter a positive integer: ")).
io @println ("The factorial of " + tostring(x) + " is " + tostring(fact x)).

In001/fact-iter.ast




Functional Languages

Hallmarks: recursion, multi-dispatch, single valued variables.
Examples: ML, Lisp, Haskell, Functional sublanguage of Asteroid
Example Program: factorial program in (functional) Asteroid

function fact
with 1 do
return 1

with n do n is single valued
return nxfact(n-1). variable.

/
/

recursion

multi-dispatch |




Functional Languages

Observations:

No explicit assignments necessary
- we will allow them later for convenience sake but
they will introduce only single valued variables

The name stems from the fact that programs
consist of recursive definitions of functions.




Functional Asteroid

—— compute the factorial
load system io.

function fact
with 1 do
return 1
with n do
return nxfact(n-1).
end

let x = tointeger(io @input("Enter a positive integer: ")).
io @rintln ("The factorial of " + tostring(x) + " is " + tostring(fact x)).

In001/fact-rec.ast




Logic Programming Languages

o Hallmarks: programs consist of rules that specify the
problem solution.

o Examples: Prolog, Maude, Isabelle
o Example Program: factorial program written in Prolog

g fact(1l,1). fact (in, out)
fact(X,F) :- -

rules < X1 1is X-l@/ and
fact(X1,F1),

F 1s X*F1.




Logic Programming Languages

Observations:
Rules do not appear in the order of
execution in the program text.
No specific order of execution is given —
rules ‘fire’ when necessary.




% factorial program

fact(1,1).

fact(X,F) :-
X1 is X-1,
fact(X1,F1),
F is X*F1.

compute :-
X is 3,
fact(X,F),
writeln(F).




Object-Based Languages

e Hallmarks: bundle data with the allowed operations = Qbjects
o Asteroid takes an interesting approach here — structures with functions.

—— simple object-based program
load system io.

—— define our rectangular structure with member functions
structure Rect with

data xdim.

data ydim.

—— return the area of the rectangle n001/rect.ast
function area with none do
return this @xdim * this @ydim.
end
end

let r = Rect(4,2).

let x = tostring(r@xdim).

let y = tostring(r@ydim).

let area = tostring(r@areal()).

io @rintln ("The area of rectangle <" + x + "," +y + "> is " + area).




Programming Language Classes

General Observations:
Programming languages guide programmers
towards a particular programming style:
» Imperative — iteration/assignment
« Functional — mathematical functions
« OO — objects
» Logic — rules
Programming itself guides the developer towards
new language ideas:

« Recursion was introduced by John McCarthy in the 1950’s
vAvlith the programming language Lisp to solve problems in

- Classes and objects were developed by Nygaard and Dahl
in the 1960’s and 70’s for the language Simula in order to
solve problem in simulations.




Take Away

e There exist many programming languages
today (> 2000)

e |n order to understand the similarities and
differences = sort into classes

Imperative
« assignment and iteration

Functional |
» Recursion, single valued variables

Logic/rule based
» programs consist of rules

o Object-based

bundle data with the allowed operations




Reading & Assignments

o Reading: Modern Programming
Languages (MPL) Chap 1.

e Install Asteroid

https://asteroid-lang.readthedocs.io

e Assignment #0: Download & Read
Syllabus — upload a copy of it into BS




